scholarly journals IDENTIFICATION AND QUANTIFICATION OF DIFFERENTIALLY EXPRESSED GENES ASSOCIATED WITH CITRUS BLIGHT (Citrus spp.)

2015 ◽  
Vol 39 (1) ◽  
pp. 32-38
Author(s):  
José Renato de Abreu ◽  
Luciano Vilela Paiva ◽  
Miguel Angel Dita Rodríguez ◽  
Anderson Tadeu Silva ◽  
Ariadne Ribeiro Henriques ◽  
...  

Brazil is the largest citrus producer in the world, being responsible for more than 20% of its production, which is, however still low due to phytosanitary issues such as citrus blight. Citrus blight is an anomaly whose causes still have not yet been determined, therefore there are no efficient control measures to minimize the production losses with the use of resistant varieties being considered the most appropriate method. However, little is known about the genes involved in the defense response of the plants to this anomaly. Considering that many physiological alterations associated with plant stress responses are controlled at a transcriptional level, in this study we sought the identification and characterization of the gene expression products differentially expressed in the response to the citrus blight. Through the suppressive subtractive hybridization technique, expressed cDNA libraries were built using mRNAs isolated from "Cravo" lemon tree roots (Citrus limonia L. Osbeck) under "Pera" orange (Citrus sinensis L. Osbeck) of healthy and sick plants. 129 clones were obtained by subtraction and their sequences were compared in databases. 34 of them linked to proteins associated to stress processes, while the others were similar to sequences of unknown functions or did not present similarity with sequences deposited in the databases. 3 genes were selected and their expressions were studied by RT - qPCR in real-time. Plants with citrus blight presented an increase of the expression level in two of those genes, suggesting that these can be directly involved with this anomaly.

2006 ◽  
Vol 24 (2) ◽  
pp. 163-172 ◽  
Author(s):  
Mohamed T. Ghorbel ◽  
Greig Sharman ◽  
Charles Hindmarch ◽  
Kevin G. Becker ◽  
Tanya Barrett ◽  
...  

The magnocellular neurons (MCNs) of the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus are the principal site of biosynthesis of prepropeptide precursor of the antidiuretic hormone vasopressin (VP). This precursor is processed during anterograde axonal transportation to terminals in the posterior pituitary gland, where biologically active VP is stored until release into the general circulation in response to physiological activation of the SON by osmotic cues. By binding to V2-type receptors located in the kidney, VP decreases the amount of water lost in urine. Osmotic activation of the SON is accompanied by a dramatic morphological and functional remodeling. We have sought to understand the mechanistic basis of this plasticity in terms of the differential expression of genes. To identify such genes, we adopted an unbiased global approach based on suppressive subtractive hybridization-polymerase chain reaction (SSH-PCR) Using this method, we generated libraries of clones putatively differentially expressed in control vs. dehydrated SON. To rapidly screen these libraries, 1,152 clones were subjected to microarray analysis, resulting in the identification of 459 differentially expressed transcripts. cDNA clones corresponding to 56 of these RNAs were sequenced, revealing many of them to be novel expressed sequence tags (ESTs). Four transcripts were shown by in situ hybridization (ISH) to be significantly up- or downregulated in the SON after dehydration. These genes may represent novel effectors or mediators of SON physiological remodeling.


2020 ◽  
Author(s):  
Fan Zhang ◽  
ShuJuan Ji ◽  
BaoDong Wei ◽  
Shunchang Cheng ◽  
Jia Hao ◽  
...  

Abstract Background: Blueberry ( Vaccinium spp. ) is a small berry with high economic value. Although cold storage can extend the storage time of blueberry to more than 60 days, it leads to chilling injury (CI) displayed as pedicle pits; and the samples of 0°C-30 days was the critical point of CI. However, little is known about the mechanism and the molecular basis response to cold stress in blueberry have not been explained definitely. Methods: To comprehensively reveal the CI mechanisms in response to cold stress, we performed high-throughput RNA Seq analysis to investigate the gene regulation network in 0d (control) and 30d chilled blueberry. At the same time, the pitting and decay rate, electrolyte leakage (EL), malondialdehyde (MDA) proline content and GSH content were also measured. Results: Two cDNA libraries from 0d (control) and 30d chilled samples were constructed and sequenced, generating a total of 35,060 unigenes with an N50 length of 1,348bp. Of these, 1852 were differentially expressed, with 1,167 upregulated and 685 downregulated. Forty-five cold-induced transcription factor (TF) families containing 1,023 TFs were identified. The DEGs indicated in biological processes such as stress responses; cell wall metabolism; abscisic acid, gibberellin, membrane lipid, energy metabolism, cellular components, and molecular functions were significantly responsed to cold storage. The transcriptional level of 40 DEGs were verified by qRT-PCR. Conclusions: The postharvest cold storage leads serious CI in blueberry, which substantially decreases the quality, storability and consumer acceptance. The MDA content, proline content, EL increased and the GSH content decreased in this chilled process. The biological processes such as stress responses, hormone metabolic processes were significantly affected by CI. Overall, the results obtained here are valuable for preventing CI under cold storage and could help to perfect the lack of the genetic information of non-model plant species.


2019 ◽  
Author(s):  
Fan Zhang ◽  
ShuJuan Ji ◽  
BaoDong Wei ◽  
Shunchang Cheng ◽  
Jia Hao ◽  
...  

Abstract Background: Blueberry (Vaccinium spp.) is a small berry with high economic value. Although cold storage can extend the storage time of blueberry to more than 60 days, it leads to chilling injury (CI) displayed as pedicle pits; and the samples of 0°C-30 days was the critical point of CI. However, little is known about the mechanism and the molecular basis response to cold stress in blueberry have not been explained definitely. Methods: To comprehensively reveal the CI mechanisms in response to cold stress, we performed high-throughput RNA Seq analysis to investigate the gene regulation network in 0d (control) and 30d chilled blueberry. At the same time, the pitting and decay rate, electrolyte leakage (EL), malondialdehyde (MDA) proline content and GSH content were also measured.Results: Two cDNA libraries from 0d (control) and 30d chilled samples were constructed and sequenced, generating a total of 35,060 unigenes with an N50 length of 1,348bp. Of these, 1852 were differentially expressed, with 1,167 upregulated and 685 downregulated. Forty-five cold-induced transcription factor (TF) families containing 1,023 TFs were identified. The DEGs indicated in biological processes such as stress responses; cell wall metabolism; abscisic acid, gibberellin, membrane lipid, energy metabolism, cellular components, and molecular functions were significantly responsed to cold storage. The transcriptional level of 40 DEGs were verified by qRT-PCR. Conclusions: The postharvest cold storage leads serious CI in blueberry, which substantially decreases the quality, storability and consumer acceptance. The MDA content, proline content, EL increased and the GSH content decreased in this chilled process. The biological processes such as stress responses, hormone metabolic processes were significantly affected by CI. Overall, the results obtained here are valuable for preventing CI under cold storage and could help to perfect the lack of the genetic information of non-model plant species.


2018 ◽  
Author(s):  
Heng-Ling Meng ◽  
Wei Zhang ◽  
Guang-Hui Zhang ◽  
Jian-Jun Wang ◽  
Zhen-Gui Meng ◽  
...  

AbstractMarsdenia tenacissima is a well-known anti-cancer medicinal plant used in traditional Chinese medicine. Drought severely affects production and no information on its transcriptional responses to drought stress is available. In this study, cDNA libraries on control (CK), drought stress (T1), and re-watering (T2) treatments were constructed and HiSeq 2000 sequencing was performed using the Illumina platform. There were 43,129,228, 47,116,844, and 42,815,454 clean reads with Q20 values of 98.06, 98.04, and 97.88, respectively. A total of 8672, 6043, and 6537 differentially expressed genes (DEGs) were identified when CK vs. T1, CK vs. T2, and T1 vs. T2, respectively, were analyzed. In addition, 1039, 1016, and 980 transcription factors (TFs) were identified in CK, T1, and T2, respectively. Among them, 363, 267, and 299 TFs were identified as DEGs in CK vs. T1, CK vs. T2, and T1 vs. T2, respectively. These differentially expressed TFs mainly belonged to the bHLH, bZIP, C2H2, ERF, MYB, MYB-related, and NAC families. A comparative analysis of CK vs. T1 and T1 vs. T2 found that 1174 genes were up-regulated and 2344 were down-regulated under drought stress and this pattern was the opposite to that found after re-watering. Among the 1174 genes up-regulated by drought stress, 64 were homologous to known functional genes that directly protect plants against drought stress. Furthermore, 44 protein kinases and 38 TFs with opposite expression patterns under drought stress and re-watering were identified, which are possibly candidate regulators for drought stress resistance in M. tenacissima. Our study is the first to characterize the M. tenacissima transcriptome in response to drought stress, and will serve as a useful resource for future studies on the functions of candidate protein kinases and TFs involved in M. tenacissima drought stress resistance.


2008 ◽  
Vol 21 (12) ◽  
pp. 1643-1653 ◽  
Author(s):  
Mi Seong Kim ◽  
Song Mi Cho ◽  
Eun Young Kang ◽  
Yang Ju Im ◽  
Hoon Hwangbo ◽  
...  

Root colonization by Pseudomonas chlororaphis O6 in cucumber elicited an induced systemic resistance (ISR) against Corynespora cassiicola. In order to gain insight into O6-mediated ISR, a suppressive subtractive hybridization technique was applied and resulted in the isolation of a cucumber galactinol synthase (CsGolS1) gene. The transcriptional level of CsGolS1 and the resultant galactinol content showed an increase several hours earlier under O6 treatment than in the water control plants following C. cassiicola challenge, whereas no difference was detected in the plants without a pathogen challenge. The CsGolS1-overexpressing transgenic tobacco plants demonstrated constitutive resistance against the pathogens Botrytis cinerea and Erwinia carotovora, and they also showed an increased accumulation in galactinol content. Pharmaceutical application of galactinol enhanced the resistance against pathogen infection and stimulated the accumulation of defense-related gene transcripts such as PR1a, PR1b, and NtACS1 in wild-type tobacco plants. Both the CsGolS1-overexpressing transgenic plants and the galactinol-treated wild-type tobacco plants also demonstrated an increased tolerance to drought and high salinity stresses.


2020 ◽  
Author(s):  
Fan Zhang ◽  
ShuJuan Ji ◽  
BaoDong Wei ◽  
Shunchang Cheng ◽  
YaJuan Wang ◽  
...  

Abstract Background: Blueberry (Vaccinium spp.) is a small berry with high economic value. Although cold storage can extend the storage time of blueberry to more than 60 days, it leads to chilling injury (CI) displaying as pedicle pits; and the samples of 0°C-30 days was the critical point of CI. However, little is known about the mechanism and the molecular basis response to cold stress in blueberry have not been explained definitely. To comprehensively reveal the CI mechanisms in response to cold stress, we performed high-throughput RNA Seq analysis to investigate the gene regulation network in 0d (control) and 30d chilled blueberry. At the same time, the pitting and decay rate, electrolyte leakage (EL), malondialdehyde (MDA) proline content and GSH content were measured. Results: Two cDNA libraries from 0d (control) and 30d chilled samples were constructed and sequenced, generating a total of 35,060 unigenes with an N50 length of 1,348bp. Of these, 1852 were differentially expressed, with 1,167 upregulated and 685 downregulated. Forty-five cold-induced transcription factor (TF) families containing 1,023 TFs were identified. The DEGs indicated biological processes such as stress responses; cell wall metabolism; abscisic acid, gibberellin, membrane lipid, energy metabolism, cellular components, and molecular functions were significantly responsed to cold storage. The transcriptional level of 40 DEGs were verified by qRT-PCR. Conclusions: The postharvest cold storage leads serious CI in blueberry, which substantially decreases the quality, storability and consumer acceptance. The MDA content, proline content, EL increased and the GSH content decreased in this chilled process. The biological processes such as stress responses, hormone metabolic processes were significantly affected by CI. Overall, the results obtained here are valuable for preventing CI under cold storage and could help to perfect the lack of the genetic information of non-model plant species. Keywords: Blueberry; Differentially expressed genes; Low temperature storage; Pathways; Pitting; Transcriptome analysis


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 697
Author(s):  
Juan Mao ◽  
Wenxin Li ◽  
Jing Liu ◽  
Jianming Li

The plant glycogen synthase kinase 3 (GSK3)-like kinases are highly conserved protein serine/threonine kinases that are grouped into four subfamilies. Similar to their mammalian homologs, these kinases are constitutively active under normal growth conditions but become inactivated in response to diverse developmental and environmental signals. Since their initial discoveries in the early 1990s, many biochemical and genetic studies were performed to investigate their physiological functions in various plant species. These studies have demonstrated that the plant GSK3-like kinases are multifunctional kinases involved not only in a wide variety of plant growth and developmental processes but also in diverse plant stress responses. Here we summarize our current understanding of the versatile physiological functions of the plant GSK3-like kinases along with their confirmed and potential substrates.


Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiang Zhang ◽  
Yan Long ◽  
Jingjing Huang ◽  
Jixing Xia

Abstract Background Salt stress threatens crop yields all over the world. Many NAC transcription factors have been reported to be involved in different abiotic stress responses, but it remains unclear how loss of these transcription factors alters the transcriptomes of plants. Previous reports have demonstrated that overexpression of OsNAC45 enhances salt and drought tolerance in rice, and that OsNAC45 may regulate the expression of two specific genes, OsPM1 and OsLEA3–1. Results Here, we found that ABA repressed, and NaCl promoted, the expression of OsNAC45 in roots. Immunostaining showed that OsNAC45 was localized in all root cells and was mainly expressed in the stele. Loss of OsNAC45 decreased the sensitivity of rice plants to ABA and over-expressing this gene had the opposite effect, which demonstrated that OsNAC45 played an important role during ABA signal responses. Knockout of OsNAC45 also resulted in more ROS accumulation in roots and increased sensitivity of rice to salt stress. Transcriptome sequencing assay found that thousands of genes were differently expressed in OsNAC45-knockout plants. Most of the down-regulated genes participated in plant stress responses. Quantitative real time RT-PCR suggested that seven genes may be regulated by OsNAC45 including OsCYP89G1, OsDREB1F, OsEREBP2, OsERF104, OsPM1, OsSAMDC2, and OsSIK1. Conclusions These results indicate that OsNAC45 plays vital roles in ABA signal responses and salt tolerance in rice. Further characterization of this gene may help us understand ABA signal pathway and breed rice plants that are more tolerant to salt stress.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 304
Author(s):  
Tatyana Savchenko ◽  
Konstantin Tikhonov

Oxidative stress is an integral component of various stress conditions in plants, and this fact largely determines the substantial overlap in physiological and molecular responses to biotic and abiotic environmental challenges. In this review, we discuss the alterations in central metabolism occurring in plants experiencing oxidative stress. To focus on the changes in metabolite profile associated with oxidative stress per se, we primarily analyzed the information generated in the studies based on the exogenous application of agents, inducing oxidative stress, and the analysis of mutants displaying altered oxidative stress response. Despite of the significant variation in oxidative stress responses among different plant species and tissues, the dynamic and transient character of stress-induced changes in metabolites, and the strong dependence of metabolic responses on the intensity of stress, specific characteristic changes in sugars, sugar derivatives, tricarboxylic acid cycle metabolites, and amino acids, associated with adaptation to oxidative stress have been detected. The presented analysis of the available data demonstrates the oxidative stress-induced redistribution of metabolic fluxes targeted at the enhancement of plant stress tolerance through the prevention of ROS accumulation, maintenance of the biosynthesis of indispensable metabolites, and production of protective compounds. This analysis provides a theoretical basis for the selection/generation of plants with improved tolerance to oxidative stress and the development of metabolic markers applicable in research and routine agricultural practice.


Sign in / Sign up

Export Citation Format

Share Document