scholarly journals A genetic study of a Staphylococus aureus plasmid involving cure and transference

1996 ◽  
Vol 114 (1) ◽  
pp. 1068-1072
Author(s):  
Ana Lúcia Costa Darini

High frequency transfer and elimination of drug resistance may indicate an extrachromosomal inheritance of genetic determinants. This study shows the cure and transfer of a small plasmid and tetracycline resistance in Staphylococcus aureus 1030 (55)TetR strains. Several methods are available for plasmid elimination. We used ethidium bromide, an agent that binds to DNA, and thus inhibits DNA polymerase. This caused a high frequency of loss of the small plasmid and resistance to tetracycline. Transfer of tetracycline resistance was done in a mixed culture at a frequency of 10-6. This type of study is very important to physicians and epidemiology investigators and provides better knowledge on antibiotic-resistance mechanisms that may occur in vivo in a hospital environment.

2007 ◽  
Vol 1 (03) ◽  
pp. 275-283 ◽  
Author(s):  
Paola E. Jeric ◽  
Agustina Azpiroz ◽  
H. Lopardo ◽  
D. Centrón

Background: In order to study the resistance mechanisms to aminoglycosides, tetracyclines and erythromycin, we investigated the genetic determinants on 85 Streptococcus spp., Staphylococcus spp., and Enterococcus spp. isolates collected from 46 hospitals of Argentina over a two-year period. Methodology: The MICs to amikacin, gentamicin, kanamycin, and streptomycin, tetracycline and erythromycin were determined by the standard broth dilution method according to CLSI recommendations. Detection of resistance genes to the antibiotic tested was assessed by the PCR standard technique whereas the clonal relationships of each species was performed by PFGE. Results: Major heterogeneity was detected in aminoglycoside and erythromycin resistances. Indeed, 37.6% of the isolates harbored the aac(6’)-aph(2’’) genes; 27% harbored the aph(3’)-IIIa and ant(6)-Ia genes along with the aac(6’)-aph(2’’) gene; 7% carried the ant(4')-Ia gene; and 71% harbored one or more of the erm(A), erm(B), erm(TR), mef(A), mef(E) and msr(A) genes. The tetracycline resistance was determined by the tet(M) gene and was found in 23 isolates that were resistant to this antibiotic. Spreading of tet(M) by the Tn916-like transposon was not a frequent event since the integrase of this element was detected only in 3 Streptococcus spp. isolates. Instead, a 370 bp fragment was detected that corresponded to a region of the CW459-like element integrase in 10 of 11 methicillin-resistant Staphylococcus aureus and in 3 group G Streptococcus isolates, a finding that implies a novel mechanism for tetracycline resistance spreading. Conclusion: This study demonstrates the wide spreading of resistance mechanisms in our nosocomial cocci population and underscores the importance of continuous and efficient epidemiological surveillance.


2018 ◽  
Vol 62 (6) ◽  
Author(s):  
Paulami Rudra ◽  
Kelley Hurst-Hess ◽  
Pascal Lappierre ◽  
Pallavi Ghosh

ABSTRACTTetracyclines have been one of the most successful classes of antibiotics. However, its extensive use has led to the emergence of widespread drug resistance, resulting in discontinuation of use against several bacterial infections. Prominent resistance mechanisms include drug efflux and the use of ribosome protection proteins. Infrequently, tetracyclines can be inactivated by the TetX class of enzymes, also referred to as tetracycline destructases. Low levels of tolerance to tetracycline inMycobacterium smegmatisandMycobacterium tuberculosishave been previously attributed to the WhiB7-dependent TetV/Tap efflux pump. However,Mycobacterium abscessusis ∼500-fold more resistant to tetracycline thanM. smegmatisandM. tuberculosis. In this report, we show that this high level of resistance to tetracycline and doxycycline inM. abscessusis conferred by a WhiB7-independent tetracycline-inactivating monooxygenase, MabTetX (MAB_1496c). The presence of sublethal doses of tetracycline and doxycycline results in a >200-fold induction of MabTetX, and an isogenic deletion strain is highly sensitive to both antibiotics. Further, purified MabTetX can rapidly monooxygenate both antibiotics. We also demonstrate that expression of MabTetX is repressed by MabTetRx, by binding to an inverted repeat sequence upstream of MabTetRx; the presence of either antibiotic relieves this repression. Moreover, anhydrotetracycline (ATc) can effectively inhibit MabTetX activityin vitroand decreases the MICs of both tetracycline and doxycyclinein vivo. Finally, we show that tigecycline, a glycylcycline tetracycline, not only is a poor substrate of MabTetX but also is incapable of inducing the expression of MabTetX. This is therefore the first demonstration of a tetracycline-inactivating enzyme in mycobacteria. It (i) elucidates the mechanism of tetracycline resistance inM. abscessus, (ii) demonstrates the use of an inhibitor that can potentially reclaim the use of tetracycline and doxycycline, and (iii) identifies two sequential bottlenecks—MabTetX and MabTetRx—for acquiring resistance to tigecycline, thereby reiterating its use againstM. abscessus.


2020 ◽  
Vol 15 (14) ◽  
pp. 1319-1333
Author(s):  
Teena Chopra ◽  
Avnish Sandhu ◽  
Nicolette Theriault ◽  
Joni Meehan ◽  
Glenn Tillotson

Omadacycline is a novel aminomethylcycline antimicrobial, US FDA approved for the treatment of community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections. It is not susceptible to common tetracycline resistance mechanisms, and has demonstrated efficacy against a broad spectrum of pathogens including resistant isolates, which are increasing in prevalence and complexity. It is available in both intravenous and oral formats, and can be administered in single, once daily doses or multiple doses, with no dosing adjustments required for sex, age, hepatic or renal impairment. It can be a good option for patients with low treatment adherence, and oral therapy may be used to reduce length of hospitalization for iv. treatment. This article reviews the in vitro and in vivo activity, PK/PD profile, integrated data from clinical trials including clinical efficacy and safety profile, and looks to future application of omadacycline.


2020 ◽  
Vol 1 (12) ◽  
pp. 40-42
Author(s):  
F. Yu. Daurova ◽  
D. I. Tomaeva ◽  
S. V. Podkopaeva ◽  
Yu. A. Taptun

Relevance: the reason for the development of complications in endodontic treatment is poor-quality instrumental treatment root canals.Aims: a study of the animicrobial action and clinical efficacy of high-frequency monopolar diathermocoagulation in the treatment of chronic forms of pulpitis.Materials and methods: 102 patients with various chronic forms of pulpitis were divided into three groups of 34 patients each. In the first two groups, high-frequency monopolar diathermocoagulation was used in endodontic treatment in different modes. In the third group, endodontic treatment was carried out without the use of diathermocoagulation (comparison group). The root canal microflora in chronic pulpitis in vivo was studied twice-before and after diathermocoagulation.Results: it was established that high-frequency monopolar diathermocoagulation in the effect mode is 3, power is 4 (4.1 W) and effect is 4, power is 4 (5.4 W) with an exposure time of 3 seconds, it has a pronounced antibacterial effect on all presented pathogenic microflora obtained from the root canals of the teeth.


2019 ◽  
Author(s):  
Daniel Sun ◽  
Soumya Poddar ◽  
Roy D. Pan ◽  
Juno Van Valkenburgh ◽  
Ethan Rosser ◽  
...  

The lead compound, an ⍺-N-heterocyclic carboxaldehyde thiosemicarbazone <b>HCT-13</b>, was highly potent against a panel of pancreatic, small cell lung carcinoma, and prostate cancer models, with IC<sub>90</sub> values in the low-to-mid nanomolar range.<b> </b>We show that the cytotoxicity of <b>HCT-13</b> is copper-dependent, that it acts as a copper ionophore, induces production of reactive oxygen species (ROS), and promotes mitochondrial dysfunction and S-phase arrest. Lastly, DNA damage response/replication stress response (DDR/RSR) pathways, specifically Ataxia-Telangiectasia Mutated (ATM) and Rad3-related protein kinase (ATR), were identified as actionable adaptive resistance mechanisms following <b>HCT-13 </b>treatment. Taken together, <b>HCT-13 </b>is potent against solid tumor models and warrants <i>in vivo</i> evaluation against aggressive tumor models, either as a single agent or as part of a combination therapy.


Author(s):  
Atsushi Kawamura ◽  
Yosuke Akiba ◽  
Masako Nagasawa ◽  
Makiko Takashima ◽  
Yoshiaki Arai ◽  
...  

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S730-S730
Author(s):  
Yoshinori Yamano ◽  
Rio Nakamura ◽  
Miki Takemura ◽  
Roger Echols

Abstract Background Cefiderocol (CFDC) is a novel siderophore, iron-chelating cephalosporin, which is transported into bacteria via iron transporters. CFDC has potent in vitro and in vivo activity against all aerobic Gram-negative bacteria, including carbapenem-resistant strains. To date, clinical isolates with cefiderocol MIC &gt;4 µg/mL have been found infrequently, in which the presence of a few β-lactamases or altered iron transport was found. We investigated potential new mechanisms causing CFDC MIC increases in non-clinical studies. Methods The mutation positions were determined by whole genome sequencing using four K. pneumoniae mutants including two KPC producers and one NDM producer that had shown CFDC MIC increases in previous in vitro resistance-acquisition studies. The mutant strains were obtained at the frequency of 10-7 to &lt; 10-8 by spreading bacteria on standard Mueller‒Hinton agar medium containing CFDC at concentrations of 10× MIC, with or without apo-transferrin (20 μg/mL). CFDC MIC was determined by broth microdilution using iron-depleted cation-adjusted Mueller-Hinton broth based on Clinical and Laboratory Standards Institute guidelines. The emergence of MIC increase mutants was also assessed by in vitro chemostat models under humanized plasma pharmacokinetic exposures of CFDC. Results The possible resistance mechanisms were investigated. Mutation of baeS or envZ, sensors of two-component regulation systems, were found in three or two mutants among the tested four isolates, respectively, and caused the MIC to increase by 4–32-fold. The altered expression level of specific genes by the baeS or envZ mutation could affect CFDC susceptibility, but the specific genes have not been identified. In addition, the mutation of exbD, an accessory protein related to iron transport, was identified in one case and caused the MIC to increase by &gt;8-fold. In vitro chemostat studies using two isolates (one NDM producer and one KPC producer) showed no resistance acquisition during 24-hour exposure. Table. Overview of mutation emergence in five isolates of K. pneumoniae Conclusion The mutation of two-component regulation systems (BaeSR and OmpR/EnvZ) and iron transport-related proteins were shown to be possible mechanisms causing CFDC MIC increases, but these mutants did not appear under human exposures. Disclosures Yoshinori Yamano, PhD, Shionogi & Co., Ltd. (Employee) Rio Nakamura, BSc, Shionogi & Co., Ltd. (Employee) Miki Takemura, MSc, Shionogi & Co., Ltd. (Employee) Roger Echols, MD, Shionogi Inc. (Consultant)


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii62-ii62
Author(s):  
Elisa Izquierdo ◽  
Diana Carvalho ◽  
Alan Mackay ◽  
Sara Temelso ◽  
Jessica K R Boult ◽  
...  

Abstract The survival of children with diffuse intrinsic pontine glioma (DIPG) remains dismal, with new treatments desperately needed. In the era of precision medicine, targeted therapies represent an exciting treatment opportunity, yet resistance can rapidly emerge, playing an important role in treatment failure. In a prospective biopsy-stratified clinical trial, we combined detailed molecular profiling (methylation BeadArray, exome, RNAseq, phospho-proteomics) linked to drug screening in newly-established patient-derived models of DIPG in vitro and in vivo. We identified a high degree of in vitro sensitivity to the MEK inhibitor trametinib (GI50 16-50nM) in samples, which harboured genetic alterations targeting the MAPK pathway, including the non-canonical BRAF_G469V mutation, and those affecting PIK3R1 and NF1. However, treatment of PDX models and of a patient with trametinib at relapse failed to elicit a significant response. We generated trametinib-resistant clones (62-188-fold, GI50 2.4–5.2µM) in the BRAF_G469V model through continuous drug exposure, and identified acquired mutations in MEK1/2 (MEK1_K57N, MEK1_I141S and MEK2_I115N) with sustained pathway up-regulation. These cells showed the hallmarks of mesenchymal transition, and expression signatures overlapping with inherently trametinib-insensitive primary patient-derived cells that predicted an observed sensitivity to dasatinib. Combinations of trametinib with dasatinib and the downstream ERK inhibitor ulixertinib showed highly synergistic effects in vitro. These data highlight the MAPK pathway as a therapeutic target in DIPG, and show the importance of parallel resistance modelling and rational combinatorial treatments likely to be required for meaningful clinical translation.


Sign in / Sign up

Export Citation Format

Share Document