scholarly journals Copper use efficiency in soybean cultivars

Author(s):  
Adônis Moreira ◽  
Larissa Alexandra Cardoso Moraes ◽  
Thiago Assis Rodrigues Nogueira ◽  
Bruna Trovo Canizella

Abstract: The objective of this work was to evaluate the effect of copper use efficiency in soybean cultivars, grown on a typical Ultisol with a high organic matter content, on soil chemical properties and on plant grain yield, nutritional state, and physiological components. The experiment was carried out in greenhouse conditions, in a 5×4 factorial arrangement, with five soybean cultivars (TMG 1066RR, BRS 360RR, NA 6262RR, BMX Turbo RR, and BRS 359RR) and four Cu rates (0, 2, 4, and 8 mg kg-1). Under the studied soil conditions, the DTPA-TEA and Mehlich-1 extractants were efficient in determining available Cu in the soil. Regardless of the cultivars, Cu application increased grain yield (GY), shoot dry weight yield (SDWY), number of pods per pot, GY/SDWY ratio, photosynthetic rate, stomatal conductance, internal CO2 concentration, transpiration rate, and chlorophyll content. However, Cu use efficiency varied significantly among the different soybean genotypes. Except for Cu, soil chemical attributes and foliar and grain nutrient contents are not influenced by Cu rates nor by soybean cultivars.

2009 ◽  
Vol 33 (4) ◽  
pp. 917-923 ◽  
Author(s):  
Jerri Édson Zilli ◽  
Karen Gonçalves Ribeiro ◽  
Rubens José Campo ◽  
Mariangela Hungria

Biological N2 fixation is a major factor contributing to the increased competitiveness of Brazilian soybeans on the international market. However, the contribution of this process may be limited by adverse conditions to symbiotic bacteria, such as fungicide seed treatments. This study aimed to evaluate the effects of the fungicides carbendazim + thiram and carboxin + thiram on soybean nodulation, plant growth and grain yield. Two field experiments were carried out in the Cerrado region of the State of Roraima, in a soil with a low organic matter content and no soybean bradyrhizobia. In 2005, seeds were treated with fungicide carbendazim + thiram and commercial inoculants containing the Bradyrhizobium elkanii strains SEMIA 5019 and SEMIA 587 and B. japonicum strains SEMIA 5079 and SEMIA 5080. In 2006, soybean seeds were treated with the fungicides carbendazim + thiram or carboxin + thiram and inoculated separately with each one of the four strains. The plants were evaluated for number of nodules and dry weight, shoot dry weight and total N accumulated in shoots 35 days after plant emergence, while grain yield and N grain content were determined at harvest. Both fungicides reduced soybean nodulation, especially in the presence of B. elkanii strains. The fungicide carbendazim + thiram reduced nodulation by about 50 % and grain yield by more than 20 % (about 700 kg ha-1), in the treatment inoculated with of strain SEMIA 587.


Author(s):  
Amita M Watkar ◽  

Soil, itself means Soul of Infinite Life. Soil is the naturally occurring unconsolidated or loose covering on the earth’s surface. Physical properties depend upon the amount, size, shape, arrangement, and mineral composition of soil particles. It also depends on the organic matter content and pore spaces. Chemical properties depend on the Inorganic and organic matter present in the soil. Soils are the essential components of the environment and foundation resources for nearly all types of land use, besides being the most important component of sustainable agriculture. Therefore, assessment of soil quality and its direction of change with time is an ideal and primary indicator of sustainable agricultural land management. Soil quality indicators refer to measurable soil attributes that influence the capacity of a soil to function, within the limits imposed by the ecosystem, to preserve biological productivity and environmental quality and promote plant, animal and human health. The present study is to assess these soil attributes such as physical and chemical properties season-wise.


2021 ◽  
Vol 11 (15) ◽  
pp. 6982
Author(s):  
Chiara Ferronato ◽  
Gilmo Vianello ◽  
Mauro De Feudis ◽  
Livia Vittori Antisari

The study of Technosols development, spatial distribution and physicochemical characteristics is becoming more and more important in the Anthropocene Era. The aim of the present study was to assess soil features and potential heavy metal release risk of soils developed on different mine tailing types after the waste disposal derived from mining activity in Central Italy. Soils were analyzed for their morphological, physical and chemical properties, and a chemical sequential extraction of heavy metals was performed. The investigated soils were classified as Technosols toxic having in some layer within 50 cm of the soil surface inorganic materials with high concentrations of toxic elements. Our findings showed that the bioavailability of potentially toxic element concentrations in the soil changed according to the origin of the mine tailing. However, because of the acidic pH, there is a serious risk of metals leaching which was reduced where the soil organic matter content was higher.


Weed Research ◽  
2019 ◽  
Vol 59 (6) ◽  
pp. 490-500
Author(s):  
W Kaczmarek‐Derda ◽  
M Helgheim ◽  
J Netland ◽  
H Riley ◽  
K Wærnhus ◽  
...  

2002 ◽  
Vol 82 (4) ◽  
pp. 433-438 ◽  
Author(s):  
M T Morera ◽  
J. Echeverría ◽  
J. Garrido

The recycling of sewage sludge to agricultural land results in the slow accumulation of potentially toxic heavy metals in soils. A greenhouse experiment was conducted to determine the bioavailability of Cu, Ni, Pb and Zn applied to soils in urban anaerobically stabilized sewage sludge. The soils were Lithic Haplumbrept (Lh), Calcixerollic Xerochrept (Cx1 and Cx2) and Paralithic Xerorthent (Px). Sunflower plants (Helianthus annuus L) were grown in the soils following amendment with the sludge. The addition of sewage sludge markedly increased the average dry weight of the plants in the soils that had lower yields without sludge addition (Lh, Cx2, and Px). The acid pH of the Lh soil favoured the bioavailability of Zn from sewage sludge. The bioavailability of Cu was greater in the alkaline soils than in the acidic soil (Lh), which can be attributed to the high organic matter content of the Lh soil which complexes Cu and impairs its uptake by the plants. The concentration of metals in the plants increased with the sewage sludge dose. The effect of the soil type on the metal concentration in plants was greater that the effect of the dose. Key words: Soils, sewage sludge, heavy metals, bioavailability, sunflower


2017 ◽  
pp. 179-183
Author(s):  
Judit Szűcsné Szolomájer ◽  
Marianna Makádi ◽  
Ibolya Demeter ◽  
Attila Tomócsik ◽  
Tibor Aranyos ◽  
...  

Composting of sewage sludges makes easier the utilization of sewage sludge in the agriculture and the composts in good quality could increase the nutrient content of soil. Due to the composting process, the sewage sludge composts with high organic matter content can be utilized in the same way as other composts or farmyard manure.Composts produced in different ways have different effects on the physical, chemical and biological properties of different soils, although their positive effects have already proved in the literature. In our study the effects of composts from different composting processes were investigated in soil-plant systems. The different physical and chemical properties of the two examined soil types (arenosol and chernozem)strongly influenced the nutrient supply capacity of composts which could be characterized by the growth of ray-grass as a test plant in the pot experiment. In this work we examined the effects of three different composts on the green weight of plants on the fourth and eighth weeks after the treatment and sowing.


2021 ◽  
Vol 30 (2) ◽  
pp. 141-149
Author(s):  
Tasnim Zannat ◽  
Farhana Firoz Meem ◽  
Rubaiat Sharmin Promi ◽  
Umme Qulsum Poppy ◽  
MK Rahman

Twelve soil and twelve leaf samples were collected from twelve litchi (Litchi chinensis Sonn.) orchards from different locations of Dinajpur to evaluate some physico-chemical properties and nutrient status of soil, and concentration of nutrients in litchi leaf. The pH of the soil varied from very strong acidic to medium acidic (4.8 - 5.7), organic matter content varied from 0.84 - 1.88%, EC varied from 302.4 - 310.2 μS/cm. The dominant soil textural class was clay loam. The average particle density was 2.49g/cm3. Total N, P, K and S in soils were 0.053 - 0.180%, 0.02 - 0.07%, 0.046 - 0.370 meq/100 g, and 0.015 - 0.028%, respectively. Available N, P, K, S, Zn, Fe, Mn and B in soils 30.40 - 57.8 mg/kg, 10.53 - 14.33 mg/kg, 0.03 - 0.32 meq/100 g, 20.03-34.80 mg/kg, 0.68-1.50 μg/g, 31.8 - 41.5 μg/g, 6.75 - 7.39 μg/g and 0.25-0.51 μg/g, respectively. The concentration of total N, P, K, S, Zn and Mn in the leaf were 1.74 - 2.20%, 0.11 - 0.188%, 0.104- 0.198%, 0.129 - 0.430%, 12 - 14 μg/g and 30 - 74 μg/g, respectively. The overall results indicated that the fertility status of the soils under the litchi plantation in the Dinajpur area are medium fertile. So, farmers could be advised to grow litchi plants after applying amendments to the soils to improve the physico-chemical properties in the Dinajpur area of Bangladesh. Dhaka Univ. J. Biol. Sci. 30(2): 141-149, 2021 (July)


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3158
Author(s):  
Tomoyo Kurozumi ◽  
Yasushi Mori ◽  
Hiroaki Somura ◽  
Milagros O-How

Rice terraces in Cordillera, Philippines, a world cultural heritage site, are threatened by the risk of collapse. It is crucial to manage these rice terraces for their conservation, while simultaneously practicing traditional farming. We examined the soil environment and investigated its effects on rice terrace conservation, by focusing on the hardpan condition; infiltration process, which is related to the collapse of rice terraces; and soil nutrition conditions in these sites. Field survey and soil analysis revealed that in areas where the hardpan was not sufficiently developed and water infiltration was effectively suppressed, organic matter content was significantly high, suggesting organic matter clogging. In these rice terraces, the amounts of P, K, Ca, and Mn were significantly low, showing the mineral leaching under reductive soil conditions. Therefore, hardpan formation, rather than organic matter clogging, is essential for the suppression of infiltration and prevention of potential terrace collapse. Because hardpan formation or organic matter clogging cannot be identified from the surface of flooded rice paddies, it is difficult to identify the influencing factor. Thus, we suggest that the hard soil layer should be checked before the planting season and drainage is allowed after the cropping season in the rainy season.


2006 ◽  
Vol 6 ◽  
pp. 231-245 ◽  
Author(s):  
Debtanu Maiti ◽  
D.K. Das ◽  
H. Pathak

Crop modeling can provide us with information about fertilizer dose to achieve the target yield, crop conditions, etc. Due to conventional and imbalanced fertilizer application, nutrient use efficiency in wheat is low. Estimation of fertilizer requirements based on quantitative approaches can assist in improving yields and nutrient use efficiency. Field experiments were conducted at 20 sites in eastern India (Nadia district of West Bengal) to assess the soil supply, requirement, and internal efficiency of N, P, K, and Zn in wheat. The data were used to calibrate the QUEFTS (Quantitative Evaluation of the Fertility of Tropical Soils) model for site-specific, balanced fertilizer recommendations. The parameters of maximum accumulation (a) and maximum dilution (d) in wheat were calculated for N (35, 100), P (129, 738), K (17, 56), and Zn (21502, 140244). Grain yield of wheat showed statistically significant correlation with N (R2= 0.937**), P (R2= 0.901**), and K uptake (R2= 0.801**). The NPK ratio to produce 1 tonne grain yield of wheat was calculated to be 4.9:1.0:8.9. The relationships between chemical properties and nutrient-supplying capacity of soils were also established. The model was validated using the data from four other experiments. Observed yields with different amounts of N, P, K, and Zn were in good agreement with the predicted values, suggesting that the validated QUEFTS model can be used for site-specific nutrient management of wheat.


2013 ◽  
Vol 284-287 ◽  
pp. 1340-1344 ◽  
Author(s):  
Felix N.L. Ling ◽  
Khairul Anuar Kassim ◽  
Ahmad Tarmizi Abdul Karim ◽  
Kenny Tiong ◽  
C.K. Tan

Johore, the southern part of west peninsular Malaysia is found to be rich in peat soil, especially at the Pontian & Batu Pahat district. The physico-chemical properties of the peat soil at the region had been extensively studied by various researches but limited studies were based on the interface layer of peat soil and non organic soil. The behaviour of the interface layer soil is believed to be governed by its organic matter content. Three locations of Batu Pahat, namely Parit Nipah, Parit Sidek & Batu Puteh which are difference in terms of geography setting were chosen in this case study. The main objective of this study is to characterize the geochemistry properties of the organic soil as a guide of its engineering behaviour. The soil specimens were collected using peat auger and undisturbed sampler. The organic contents and types of organic were determined in laboratory based on Loss on Ignition at 440c, carbon content and its molecular functional group. The pH, sulphate content, chloride content and cation exchange capacity (CEC) of the organic soil were also determined as a guide of its potential stabilization by using chemical stabilizer. X-ray fluorescence (XRF) and Fourier Transform Infrared (FTIR) were utilized to determine the bulk chemical composition of the soil and its functional group, respectively. The findings of this study are expected to give a better overview of organic soil which enable designer to have a better understanding when dealing with this kind of material.


Sign in / Sign up

Export Citation Format

Share Document