scholarly journals Usage of glulam waste for particleboard production

2020 ◽  
Vol 20 (2) ◽  
pp. 89-97
Author(s):  
Tiago Hendrigo de Almeida ◽  
Fabiane Salles Ferro ◽  
Diego Henrique de Almeida ◽  
Francisco Antonio Rocco Lahr

Abstract Glulam are long engineered wood beams (or columns) composed by graded lumbers bounded together with the use of appropriate adhesives under pre-established pressure. The greater the industrialization the greater will be the production of wood waste a matter that deserves attention and development of technologies in terms of its waste management. This paper aimed to investigate the technical feasibility of Brazilian industrial glulam waste usage as raw material for particleboard production industries using a castor oil-based polyurethane adhesive. Particleboards were manufactured using glulam (produced with Eucalyptus urograndis) waste particles and castor oil-based polyurethane adhesive at 8, 10, 12 and 14% mass proportions and characterized based on NBR 14810-2:2006 procedures. Analysis of variance was performed for the comparison of mechanical and physical performances of the panels. The increase of adhesive content caused and increase of the MOR (Rupture Modulus), but the MOE (Elasticity Modulus) and the physical properties remained unaltered above 12% of adhesive content. The adhesive content greater than 8% provided panel performances that met the standardized specifications. Based on these findings, it was possible to conclude that the waste of glulam produced with Eucalyptus urograndis can be used as raw material for particleboard production.

Nativa ◽  
2018 ◽  
Vol 6 (2) ◽  
pp. 177
Author(s):  
Talita Baldin ◽  
Maiara Talgatti ◽  
Amanda Grassamann da Silveira ◽  
Bruna Gabrieli Resner ◽  
Elio José Santini

O objetivo do presente trabalho foi avaliar o potencial de uso de partículas de resíduos de embalagens cartonadas e partículas de Eucalyptus grandis para a fabricação de compósitos, colados com adesivo à base de ureia-formaldeído. Foram utilizadas cinco diferentes proporções de madeira de E. grandis e embalagens cartonadas. As partículas de madeira e embalagens cartonadas foram produzidas em laboratório. A avaliação da qualidade dos compósitos envolveu a caracterização da geometria das partículas, das propriedades físicas: massa específica básica, teor de umidade de equilíbrio, absorção de água e inchamento em espessura após 2 e 24 horas de imersão em água e das propriedades mecânicas: flexão estática (MOE e MOR), resistência ao arrancamento de parafuso, ligação interna e dureza Janka. A incorporação de partículas de embalagens cartonadas proporcionou uma melhoria nas propriedades físicas em relação aos compósitos puros de madeira. Já para as propriedades mecânicas, compósitos com até 50% de embalagens cartonadas obtiveram melhores resultados, no entanto, a incorporação a partir de 75% ocasionou decadência nessas propriedades. Compósitos de madeira de E. grandis e embalagens cartonadas apresentaram potencial para utilização em ambientes internos e podem ser uma alternativa para a produção de compósitos sustentáveis e de boa qualidade.Palavra-chave: materiais sustentáveis, propriedades físicas e mecânicas, ureia-formaldeído. CARTONBOARD PACKAGING AS A RAW MATERIAL IN THE MANUFACTURE OF COMPOSITES ABSTRACT:The aim of this study was to evaluate the potential waste particles use of carton packaging and particles of E. grandis for the manufacture of particle boards, bonded with urea-formaldehyde-based adhesive. Five different proportions of E. grandis wood and cartons have been used. The wood particles and cartons were produced in the laboratory. The quality assessment panels involved characterizing the geometry of the particles, the physical properties: specific gravity, equilibrium moisture content, water absorption and thickness swelling after 2 and 24 hours of immersion in water and mechanical properties: flexural static (MOR and MOE), resistance to screw pullout, internal bond and Janka hardness. The incorporation of particulate cartons provided an improvement in physical properties relative to pure wood panels. As for the mechanical properties, panels of up to 50 % of cartons obtained best results, however, incorporating from 75 % decay caused these properties. The wood particleboard of E. grandis and cartons showed potential for use indoors and become an alternative for producing sustainable panels and of good quality.Keywords: sustainable materials, physical-mechanical properties; urea-formaldehyde. DOI:


Alloy Digest ◽  
1989 ◽  
Vol 38 (3) ◽  

Abstract ZIRCAR ZIRCONIA POWDER TYPEZYP-4.5 is a highly reactive form of zirconium oxide stabilized in the tetragonal crystal state with added yttrium oxide. It is an excellent raw material for producing dense structural and wear resistant parts. This datasheet provides information on composition, physical properties, microstructure, hardness, elasticity, and bend strength as well as fracture toughness. It also includes information on powder metal forms. Filing Code: Cer-1. Producer or source: Zircar Products Inc..


2016 ◽  
Vol 881 ◽  
pp. 383-386 ◽  
Author(s):  
Raimundo J.S. Paranhos ◽  
Wilson Acchar ◽  
Vamberto Monteiro Silva

This study evaluated the potential use of Sugarcane Bagasse Ashes (SBA) as a flux, replacing phyllite for the production of enamelled porcelain tile. The raw materials of the standard mass components and the SBA residue were characterized by testing by XRF, XRD, AG, DTA and TGA. Test samples were fabricated, assembled in lots of 3 units and sintered at temperatures of 1150 ° C to 1210 ° C. The results of the physical properties, mechanical properties and SEM of the sintered samples, showed that the formulation, G4 - in which applied 10% of SBA replacing phyllite, sintering temperature 1210 ° C showed better performance as the previously mentioned properties due to the formation of mullite crystals, meeting the prerequisites of standards for enamelled porcelain tile, while reducing the environmental impact and the cost of production.


2016 ◽  
Vol 690 ◽  
pp. 282-285
Author(s):  
Soravich Mulinta

The purpose of the study was to investigate the effects of dolomite body, frit and potassium feldspar on the properties of color slip for decorative method of color slip on earthen ware production. The characterization of raw material was analyzed by X-ray fluorescence (XRF). The experiment started with triaxial blend of dolomite body, frit and potassium feldspar in the defined ratio and then to painting of color slips on earthenware production. After that, firing specimens at 950 °C in oxidation atmosphere. Finally, the specimens were tested microstructure and physical properties. The results showed that the ratio of 50% dolomite body, 40% frit and 10% potassium feldspar were optimum properties for decorative on earthenware body. In color slip consisting of blue color added Cobalt oxide 1% ,Green colors added chromic oxide 10% , Gray color added manganese oxide 10% ,yellow color added stain 2225 10% and hazel color added ferric oxide 2 wt %.


2011 ◽  
Vol 55-57 ◽  
pp. 1436-1440 ◽  
Author(s):  
Xiao Hua Zhao ◽  
Guang Hui Min ◽  
Jing Xu ◽  
Jie Lin

Lanthanum hexaboride (LaB6) films were deposited on Si (111) substrates by magnetron sputtering method. The characterization of the films was investigated by means of atom force microscopy (AFM), X-ray diffraction (XRD), four-point probe electrical resistance measurement, scratch tester and nano-indentation tester. Influence of argon pressure on physical properties, such as crystallization degree, conductivity and mechanical properties was studied. All the films were smooth and dense. The film crystallites showed a preferential orientation of (100) plane, but the films which were deposited at 2.0 Pa exhibited amorphous structures. LaB6 films which were deposited below 1.5 Pa had excellent conductivity. The bonding strength of the films which were deposited at 1.0 Pa was higher than the others due to the formation of the nano-sized crystals. The hardness and elastic modulus were investigated in connection with the crystalline of LaB6 films. As a result, the films which were deposited at 1.0 Pa had a maximal value of hardness (16.782 Gpa) and elasticity modulus (193.895 Gpa). In a word, the LaB6 films which were deposited at 1.0 Pa have a higher degree of crystalline and more excellent physical properties in comparison with the others. The obtained results will be used synthesizing LaB6 films for applications in low-temperature thermoelectric devices.


2016 ◽  
Vol 30 (2) ◽  
pp. 237-243 ◽  
Author(s):  
Karolina Szulc ◽  
Andrzej Lenart

Abstract The paper presents an influence of raw material composition and technological process applied on selected physical properties of food powders. Powdered multi-component nutrients were subjected to the process of mixing, agglomeration, coating, and drying. Wetting liquids ie water and a 15% water lactose solution, were used in agglomeration and coating. The analyzed food powders were characterized by differentiated physical properties, including especially: particle size, bulk density, wettability, and dispersibility. The raw material composition of the studied nutrients exerted a statistically significant influence on their physical properties. Agglomeration as well as coating of food powders caused a significant increase in particle size, decreased bulk density, increased apparent density and porosity, and deterioration in flowability in comparison with non-agglomerated nutrients.


Author(s):  
Norman Herz ◽  
Ervan G. Garrison

Archaeological ceramics refers to products made primarily of clay and containing variable amounts of lithic and other materials as well. The term ceramic is derived from the Greek keramos, which has been translated as "earthenware" or "burned stuff." Ceramics include products that have been fired, primarily pottery but also brick, tile, glass, plaster, and cement as well. Since pottery is by far the most important archaeologically, and the methods of sampling and study are largely applicable to the others, this chapter is devoted primarily to pottery. Pottery then is the general term used here for artifacts made entirely or largely of clay and hardened by heat. Today, a distinction is sometimes made between pottery, applied to lower-quality ceramic wares, and the higher-grade product porcelain. No such distinction will be made here, so the term pottery alone will be used. Raw material that goes into the making of a pot includes primarily clay, but also varying amounts of temper, which is added to make the material more manageable and to help preserve the worked shape of the pot during firing. Of primary interest in ceramic studies are 1. the nature and the source of the raw materials—clays, temper, and slip (applied surface pigment)—and a reconstruction of the working methods of ancient potters; 2. the physical properties of the raw materials, from their preparation as a clay-temper body through their transformations during manufacture into a final ceramic product; 3. the nature of the chemical and mineral reactions that take place during firing as a clue to the technology available to the potter; and 4. the uses, provenance, and trade of the wares produced. Much of the information needed to answer these questions is available through standard geochemical and petrographic analysis of ceramic artifacts. Insight into the working methods of ancient potters also has been obtained through ethnographic studies of cultures where, because of isolation or conservative traditions or both, ancient methods have been preserved.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5023
Author(s):  
Ge Li ◽  
Menghui Zhao ◽  
Fei Xu ◽  
Bo Yang ◽  
Xiangyu Li ◽  
...  

Over the past few decades, with the development of science and technology, the field of biomedicine has rapidly developed, especially with respect to biomedical materials. Low toxicity and good biocompatibility have always been key targets in the development and application of biomedical materials. As a degradable and environmentally friendly polymer, polylactic acid, also known as polylactide, is favored by researchers and has been used as a commercial material in various studies. Lactic acid, as a synthetic raw material of polylactic acid, can only be obtained by sugar fermentation. Good biocompatibility and biodegradability have led it to be approved by the U.S. Food and Drug Administration (FDA) as a biomedical material. Polylactic acid has good physical properties, and its modification can optimize its properties to a certain extent. Polylactic acid blocks and blends play significant roles in drug delivery, implants, and tissue engineering to great effect. This article describes the synthesis of polylactic acid (PLA) and its raw materials, physical properties, degradation, modification, and applications in the field of biomedicine. It aims to contribute to the important knowledge and development of PLA in biomedical applications.


MRS Advances ◽  
2018 ◽  
Vol 3 (61) ◽  
pp. 3575-3579
Author(s):  
Francine M. Nunes ◽  
Eduarda M. Rangel ◽  
Fernando M. Machado ◽  
Rubens Camaratta ◽  
Letícia P. Cardoso ◽  
...  

AbstractThe food processing industry highlights the daily generation of large amounts of eggshell solid residue. In this way, this residue becomes a non renewable raw material to be reused as an additive in red ceramics, in order to reduce the volume of disposal to the environment and improve the physical properties of the product. The objective of this work was to evaluate the forming moisture, linear shrinkage of drying and shrinkage of drying burning of ceramic test pieces (CS’s) with formulations with 2% and 3% of white eggshell residue (ER) incorporated in clay. The clay and ER were collected in the city of Pelotas-RS. The ER sample was analyzed by X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD). After pressing, natural and artificial drying was carried out and the CS’s were burned. These were evaluated through normative parameters C-020/95, C-021/95 and C-026/95. The values obtained for the forming moisture were between 5.82 and 8.78%, for the linear shrinkage of drying between 0.10 and 0.43% and, for the linear contraction burning between -0.29 and 0.08%. The results showed that the addition of ER to the ceramic mass helped in the reduction of the forming moisture and the linear shrinkage of the ceramic test pieces.


Sign in / Sign up

Export Citation Format

Share Document