scholarly journals Effects of nutrients increase on the copepod community of a reservoir using cages

2015 ◽  
Vol 27 (3) ◽  
pp. 265-274 ◽  
Author(s):  
Vanessa Graciele Tibúrcio ◽  
Rodrigo Leite Arrieira ◽  
Leilane Talita Fatoreto Schwind ◽  
Claudia Costa Bonecker ◽  
Fábio Amodêo Lansac-Tôha

Abstract Aim: This study investigated changes in copepod abundance and the influence of environmental variables in a reservoir with fish farming using cages, on temporal and spatial scales. We hypothesised that the copepod abundance will increase when influenced by changes in environmental variables due the increase of nutrients originating from fish farming. Methods A 120-day sampling of copepods and environmental variables was carried out in a subtropical reservoir of the Paraná River basin (Rosana reservoir), upstream and downstream of three sets of cages with different fish stocking densities. A Principal Component Analysis was conducted to characterise sampling periods and points through environmental variables. The differences between copepod abundance according to sampling periods and points were tested by ANOVA. Results We observed higher maximum values for most nutrient concentrations and dissolved oxygen in the final stage of the experiment and in the location of cages installation. The copepod abundance increased sharply during the first days of the experiment and then decreased during the following periods with a tendency towards returning to the initial conditions at the final stage of the experiment. A significant difference in copepod abundance between the location of cages installation and downstream was showed. In addition, turbidity, chlorophyll-a, and nitrate significantly predicted copepod abundance. Conclusion The results suggested that the changes in copepod abundance over time are influenced by environmental variables, evidenced by the increase in nutrient concentration after the cage installation, related to the increase in the practice of fish farming. The environmental variables related to system productivity were linked to the availability of food resources. Thus, our hypothesis that copepod abundance is increased due the alterations in environmental variables caused by the increase in the practice of fish farming using cages was corroborated.

2017 ◽  
Vol 66 (1) ◽  
pp. 336
Author(s):  
Diana Carolina Montoya Ospina ◽  
Francisco Antonio Villa-Navarro ◽  
Edwin Orlando López-Delgado

The distribution and abundance of fish is influenced by multiple factors at temporal and spatial scales, and their community composition represent good river integrity indicators. The main objective of this study was to describe the composition and structure of fish assemblages along the Anchique river sub-basin (that drains to Magdalena river), and to test the hypothesis that these communities vary temporally and spatially. For this, four sites (E1, E2, E3 and E4) were sampled along the river (from river birthplace to Magdalena river), during the periods of high and low waters, in 2014. In each site, longitudinal transects (100 m long x 2 m wide, 60 min) were established and fishing was made with both electrofishing and trawl (10 m x 1 m, 0.05 m) nets. Fish samples were fixed and transported to the laboratory for posterior taxonomic identification with the use of keys; fish diversity and structure composition were calculated with the use of standard models. Besides, substrate composition and environmental variables were also considered. A total of 652 fish belonging to 36 species were recorded; high water showed higher values (325 fish with 32 species) than low water period (300 fish with 31 species). Siluriformes was dominant (51 %), followed by Characiformes (32 %), Gymnotiformes (5 %), Cyprinidontiformes and Cichliformes (6 %). Most abundant families were Characidae (28.3 %; 9 spp.), Loricariidae (23.4 %; 8 spp.) and Trichomycteridae (15.0 %; 2 spp.). Kruskal-Wallis test indicated that there is no significant difference among some environmental variables at the temporal level. The values of structural complexity and substrate composition indices showed that E4 had the highest values (0.8), followed by E1 (0.6), and E2 and E3 (0.4). Moreover, E4 had the highest richness and diversity, according to Hill’s number. The canonical correspondence analysis showed that the substrate, and the complexity and width of the river channel, had a significant influence on fish composition and distribution. The fish community richness and diversity did not change temporarily, but did spatially, which could be related to the different structural features of sampling sites.


2021 ◽  
Vol 33 ◽  
Author(s):  
Lyza Christine dos Santos Moura ◽  
Silvia Moreira dos Santos ◽  
Cláudia Alves de Souza ◽  
Carlos Roberto Alves dos Santos ◽  
Jascieli Carla Bortolini

Abstract: Aim Species richness and abundance are important elements in understanding communities’ dynamics. In this way we evaluated the spatial and temporal variation of phytoplankton richness and density in a tropical reservoir, and its main drivers. We tested whether the temporal variability of the hydrological cycle influences the phytoplankton, in addition to testing the main environmental variables that influence richness and density. Methods Data from environmental variables and phytoplankton were sampled in different regions of João Leite reservoir, Goiás, Brazil, during a dry and rainy period, and were analyzed by Principal Component Analysis, Student's t-test and Bioenv. Results We recorded distinct environmental scenarios between the dry and rainy period, with temporal differences in richness. Sixty-two taxa were recorded, with cyanobacterial predominance in both hydrological periods and in the lentic reservoir regions. Water temperature, pH, electrical conductivity, dissolved oxygen, turbidity, and nutrient concentrations were the main drivers of phytoplankton richness and density in our study. Conclusions The richness and abundance of species directly reflect the determining factors in the structure of communities, generating important information about ecosystem functions. Therefore, understanding the environmental variability on phytoplankton richness and abundance in tropical reservoirs is essential, since the construction of reservoirs influences aquatic biodiversity and the provision of ecosystem services.


2022 ◽  
Vol 34 ◽  
Author(s):  
Matheus Vieira da Silva ◽  
Jascieli Carla Bortolini ◽  
Susicley Jati

Abstract Aim We aimed to characterize the structure of the phytoplankton community and identify the main environmental factors driving the community in five reservoirs constructed in the region of the high Paraná River. Methods The phytoplankton and environmental variables were collected at the lacustrine region of the reservoir, between November 2013 and November 2014, with interval between collections ranged from 3 to 6 months. The richness and biomass of the phytoplankton community were measured as a response to the spatial and temporal environmental variability. Data from environmental variables was analyzed by Principal Component Analysis (PCA). Non-Metric Multidimensional Scaling Analyzes (NMDS) were performed on the richness and biomass data of the phytoplankton community. Results We identified 80 taxa distributed in 11 taxonomic classes, from which Cyanobacteria and Chlorophyceae were best represented. We did not observe significant temporal variation for either environmental variables or attributes of the phytoplankton community, which may be related to the prolonged drought in this period in the Brazilian Southwest. Higher phytoplankton richness and biomass were found in the Três Irmãos (Tiete River), reservoir located in the most anthropized basin in the country. Cyanobacteria and dinoflagellates dominated the biomass in all reservoirs during the studied period. The Ilha Solteira, Jupiá and Porto Primavera reservoirs showed a tendency to decrease in the values of phytoplankton richness and biomass, and the reservoirs built in series in the Paraná River probably have strong interdependence, according to the CRCC concept. Conclusions Spatial variation in phytoplankton attributes was influenced mainly by the position occupied by the reservoir in the hydrographic basin, water retention time (RT) and nutrient concentrations in each reservoir.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Mendes ◽  
J. C. B. da Silva ◽  
J. M. Magalhaes ◽  
B. St-Denis ◽  
D. Bourgault ◽  
...  

AbstractInternal waves (IWs) in the ocean span across a wide range of time and spatial scales and are now acknowledged as important sources of turbulence and mixing, with the largest observations having 200 m in amplitude and vertical velocities close to 0.5 m s−1. Their origin is mostly tidal, but an increasing number of non-tidal generation mechanisms have also been observed. For instance, river plumes provide horizontally propagating density fronts, which were observed to generate IWs when transitioning from supercritical to subcritical flow. In this study, satellite imagery and autonomous underwater measurements are combined with numerical modeling to investigate IW generation from an initial subcritical density front originating at the Douro River plume (western Iberian coast). These unprecedented results may have important implications in near-shore dynamics since that suggest that rivers of moderate flow may play an important role in IW generation between fresh riverine and coastal waters.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 124-125
Author(s):  
Raul Castro-Portuguez ◽  
Samuel Freitas ◽  
George Sutphin

Abstract Hepatocellular carcinoma (HCC) is the most prevalent cancer in the liver. The majority of ingested tryptophan is processed in the liver through the kynurenine pathway, the endpoint of which is de novo NAD+ biosynthesis. Dysregulation of tryptophan-kynurenine metabolism and NAD+ synthesis may promote mitochondrial malfunction, tumor reprogramming, and carcinogenesis. Using a publicly available gene expression dataset from liver hepatocellular carcinoma (LIHC) samples available through The Cancer Genome Atlas (TCGA; n = 371), we employed Principal Component Analysis (PCA), hierarchical clustering, gene-pattern expression profiling, and survival analysis to cluster patients and determine overall survival. Our analysis of genes encoding kynurenine pathway enzymes determined that patients with high QPRT expression had a poor prognosis with decreased median survival, with no effect on the maximum survival. There is a significant difference in the survival between patients with high QPRT expression relative to patients with high HAAO/AFMID expression (HR = 1.2, [95% CI 0.5-1.8] P = 0.0181, Gehan-Breslow-Wilcoxon Test). Patients with high QPRT expression have higher survival rates compared with low QPRT expression (HR = 1.4, [95% CI 0.9-2.2] P = 0.0344, Gehan-Breslow-Wilcoxon Test). To test the consequences of kynurenine-pathway inhibition in mitochondrial function and morphology we use 4-Cl-3HAA, an irreversible HAAO inhibitor, and observed a small increase in mitochondrial fragmentation in HepG2 cells after 24 hours of treatment. We conclude that kynurenine metabolism may be useful as a biomarker to predict patient prognosis among HCC patients. In ongoing work, we are testing QPRT inhibitors in cell culture as a potential adjuvant for chemotherapies.


2013 ◽  
Vol 26 (22) ◽  
pp. 9090-9114 ◽  
Author(s):  
Waqar Younas ◽  
Youmin Tang

Abstract In this study, the predictability of the Pacific–North American (PNA) pattern is evaluated on time scales from days to months using state-of-the-art dynamical multiple-model ensembles including the Canadian Historical Forecast Project (HFP2) ensemble, the Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) ensemble, and the Ensemble-Based Predictions of Climate Changes and their Impacts (ENSEMBLES). Some interesting findings in this study include (i) multiple-model ensemble (MME) skill was better than most of the individual models; (ii) both actual prediction skill and potential predictability increased as the averaging time scale increased from days to months; (iii) there is no significant difference in actual skill between coupled and uncoupled models, in contrast with the potential predictability where coupled models performed better than uncoupled models; (iv) relative entropy (REA) is an effective measure in characterizing the potential predictability of individual prediction, whereas the mutual information (MI) is a reliable indicator of overall prediction skill; and (v) compared with conventional potential predictability measures of the signal-to-noise ratio, the MI-based measures characterized more potential predictability when the ensemble spread varied over initial conditions. Further analysis found that the signal component dominated the dispersion component in REA for PNA potential predictability from days to seasons. Also, the PNA predictability is highly related to the signal of the tropical sea surface temperature (SST), and SST–PNA correlation patterns resemble the typical ENSO structure, suggesting that ENSO is the main source of PNA seasonal predictability. The predictable component analysis (PrCA) of atmospheric variability further confirmed the above conclusion; that is, PNA is one of the most predictable patterns in the climate variability over the Northern Hemisphere, which originates mainly from the ENSO forcing.


2016 ◽  
Author(s):  
Loredana G. Suciu ◽  
Robert J. Griffin ◽  
Caroline A. Masiello

Abstract. Ozone (O3) in the lower troposphere is harmful to people and plants, particularly during summer, when photochemistry is the most active and higher temperatures favor local chemistry. Because of its dependence on the volatile organic compounds (VOCs) to nitrogen oxides (NOx) ratio, ground-level O3 is difficult to control locally, where many sources of these precursors contribute to its mixing ratio. In addition to local emissions, chemistry and transport, larger-scale factors also contribute to local O3 and NOx. These additional contributions (often referred to as "regional background") are not well quantified within the Houston-Galveston-Brazoria (HGB) region, impeding more efficient controls on precursor emissions to achieve compliance with the National Ambient Air Quality Standards for O3. In this study, we estimate regional background O3 and NOx in the HGB region and quantify their decadal-scale trends. We use four different approaches based on principal component analysis (PCA) to quantify background O3 and NOx. Three of these approaches consist of independent PCA on both O3 and NOx for both 1-h and 8-h levels to compare our results with previous studies and to highlight the effect of both temporal and spatial scales. In the fourth approach, we co-varied O3, NOx and meteorology. Our results show that the estimation of regional background O3 has less inherent uncertainty when it was constrained by NOx and meteorology, yielding a statistically significant temporal trend of −0.69 ± 0.27 ppb y−1. Likewise, the estimation of regional background NOx trend constrained by O3 and meteorology was −0.04 ± 0.02 ppb y−1. Our best estimates of 17-y average of season-scale background O3 and NOx were 46.72 ± 2.08 ppb and 6.80 ± 0.13 ppb, respectively. Regional background O3 and NOx both have declined over time in the HGB region. This decline is likely caused by a combination of state of Texas controls on precursor emissions since 2007 and the increase in frequency of flow from the Gulf of Mexico over the same time period.


Author(s):  
F. F. Grinstein ◽  
A. A. Gowardhan ◽  
J. R. Ristorcelli

Under-resolved computer simulations are typically unavoidable in practical turbulent flow applications exhibiting extreme geometrical complexity and a broad range of length and time scales. An important unsettled issue is whether filtered-out and subgrid spatial scales can significantly alter the evolution of resolved larger scales of motion and practical flow integral measures. Predictability issues in implicit large eddy simulation of under-resolved mixing of material scalars driven by under-resolved velocity fields and initial conditions are discussed in the context of shock-driven turbulent mixing. The particular focus is on effects of resolved spectral content and interfacial morphology of initial conditions on transitional and late-time turbulent mixing in the fundamental planar shock-tube configuration.


2019 ◽  
Vol 35 (6) ◽  
Author(s):  
Daniel Vieira de Morais ◽  
Lorena Andrade Nunes ◽  
Vandira Pereira da Mata ◽  
Maria Angélica Pereira de Carvalho Costa ◽  
Geni da Silva Sodré ◽  
...  

Leaves are plant structures that express important traits of the environment where they live. Leaf description has allowed identification of plant species as well as investigation of abiotic factors effects on their development, such as gases, light, temperature, and herbivory. This study described populations of Dalbergia ecastaphyllum through leaf geometric morphometrics in Brazil. We evaluated 200 leaves from four populations. The principal component analysis (PCA) showed that the first four principal components were responsible for 97.81% of variation. The non-parametric multivariate analysis of variance (NPMANOVA) indicated significant difference between samples (p = 0.0001). The Mentel test showed no correlation between geographical distances and shape. The canonical variate analysis (CVA) indicated that the first two variables were responsible for 96.77 % of total variation, while the cross-validation test showed an average of 83.33%. D. ecastaphyllum leaves are elliptical and ovate.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1637
Author(s):  
Quintino Reis de Araujo ◽  
Guilherme Amorim Homem de Abreu Loureiro ◽  
Cid Edson Mendonça Póvoas ◽  
Douglas Steinmacher ◽  
Stephane Sacramento de Almeida ◽  
...  

Free amino acids in cacao beans are important precursors to the aroma and flavor of chocolate. In this research, we used inferential and explanatory statistical techniques to verify the effect of different edaphic crop conditions on the free amino acid profile of PH-16 dry cacao beans. The decreasing order of free amino acids in PH-16 dry cacao beans is leucine, phenylalanine, glutamic acid, alanine, asparagine, tyrosine, gamma-aminobutyric acid, valine, isoleucine, glutamine, lysine, aspartic acid, serine, tryptophan, threonine, glycine. With the exception of lysine, no other free amino acid showed a significant difference between means of different edaphic conditions under the ANOVA F-test. The hydrophobic free amino acids provided the largest contribution to the explained variance with 58.01% of the first dimension of the principal component analysis. Glutamic acid stands out in the second dimension with 13.09%. Due to the stability of the biochemical profile of free amino acids in this clonal variety, it is recommended that cacao producers consider the genotype as the primary source of variation in the quality of cacao beans and ultimately the chocolate to be produced.


Sign in / Sign up

Export Citation Format

Share Document