scholarly journals DefogGAN: Predicting Hidden Information in the StarCraft Fog of War with Generative Adversarial Nets

2020 ◽  
Vol 34 (04) ◽  
pp. 4296-4303
Author(s):  
Yonghyun Jeong ◽  
Hyunjin Choi ◽  
Byoungjip Kim ◽  
Youngjune Gwon

We propose DefogGAN, a generative approach to the problem of inferring state information hidden in the fog of war for real-time strategy (RTS) games. Given a partially observed state, DefogGAN generates defogged images of a game as predictive information. Such information can lead to create a strategic agent for the game. DefogGAN is a conditional GAN variant featuring pyramidal reconstruction loss to optimize on multiple feature resolution scales. We have validated DefogGAN empirically using a large dataset of professional StarCraft replays. Our results indicate that DefogGAN can predict the enemy buildings and combat units as accurately as professional players do and achieves a superior performance among state-of-the-art defoggers.

2021 ◽  
Vol 25 (2) ◽  
pp. 397-417
Author(s):  
Xiaoling Huang ◽  
Hao Wang ◽  
Lei Li ◽  
Yi Zhu ◽  
Chengxiang Hu

Inferring user interest over large-scale microblogs have attracted much attention in recent years. However, the emergence of the massive data, dynamic change of information and persistence of microblogs pose challenges to interest inference. Most of the existing approaches rarely take into account the combination of these microbloggers’ characteristics within the model, which may incur information loss with nontrivial magnitude in real-time extraction of user interest and massive social data processing. To address these problems, in this paper, we propose a novel User-Networked Interest Topic Extraction in the form of Subgraph Stream (UNITE_SS) for microbloggers’ interest inference. To be specific, we develop several strategies for the construction of subgraph stream to select the better strategy for user interest inference. Moreover, the information of microblogs in each subgraph is utilized to obtain a real-time and effective interest for microbloggers. The experimental evaluation on a large dataset from Sina Weibo, one of the most popular microblogs in China, demonstrates that the proposed approach outperforms the state-of-the-art baselines in terms of precision, mean reciprocal rank (MRR) as well as runtime from the effectiveness and efficiency perspectives.


Author(s):  
Ximing Zhang ◽  
Mingang Wang ◽  
Lin Cao

Most tracking-by-detection based trackers employ the online model update scheme based on the spatiotemporal consistency of visual cues. In presence of self-deformation, abrupt motion and heavy occlusion, these trackers suffer from different attributes and are prone to drifting. The model based on offline training, namely Siamese networks is invariant when suffering from the attributes. While the tracking speed of the offline method can be slow which is not enough for real-time tracking. In this paper, a novel collaborative tracker which decomposes the tracking task into online and offline modes is proposed. Our tracker switches between the online and offline modes automatically based on the tracker status inferred from the present failure tracking detection method which is based on the dispersal measure of the response map. The present Real-Time Thermal Infrared Collaborative Online and Offline Tracker (TCOOT) achieves state-of-the-art tracking performance while maintaining real-time speed at the same time. Experiments are carried out on the VOT-TIR-2015 benchmark dataset and our tracker achieves superior performance against Staple and Siam FC trackers by 3.3% and 3.6% on precision criterion and 3.8% and 5% on success criterion, respectively. The present method is real-time tracker as well.


2010 ◽  
Vol 20 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Glenn Tellis ◽  
Lori Cimino ◽  
Jennifer Alberti

Abstract The purpose of this article is to provide clinical supervisors with information pertaining to state-of-the-art clinic observation technology. We use a novel video-capture technology, the Landro Play Analyzer, to supervise clinical sessions as well as to train students to improve their clinical skills. We can observe four clinical sessions simultaneously from a central observation center. In addition, speech samples can be analyzed in real-time; saved on a CD, DVD, or flash/jump drive; viewed in slow motion; paused; and analyzed with Microsoft Excel. Procedures for applying the technology for clinical training and supervision will be discussed.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4171
Author(s):  
Rabia Ikram ◽  
Badrul Mohamed Jan ◽  
Akhmal Sidek ◽  
George Kenanakis

An important aspect of hydrocarbon drilling is the usage of drilling fluids, which remove drill cuttings and stabilize the wellbore to provide better filtration. To stabilize these properties, several additives are used in drilling fluids that provide satisfactory rheological and filtration properties. However, commonly used additives are environmentally hazardous; when drilling fluids are disposed after drilling operations, they are discarded with the drill cuttings and additives into water sources and causes unwanted pollution. Therefore, these additives should be substituted with additives that are environmental friendly and provide superior performance. In this regard, biodegradable additives are required for future research. This review investigates the role of various bio-wastes as potential additives to be used in water-based drilling fluids. Furthermore, utilization of these waste-derived nanomaterials is summarized for rheology and lubricity tests. Finally, sufficient rheological and filtration examinations were carried out on water-based drilling fluids to evaluate the effect of wastes as additives on the performance of drilling fluids.


Author(s):  
Gabriel Wilkes ◽  
Roman Engelhardt ◽  
Lars Briem ◽  
Florian Dandl ◽  
Peter Vortisch ◽  
...  

This paper presents the coupling of a state-of-the-art ride-pooling fleet simulation package with the mobiTopp travel demand modeling framework. The coupling of both models enables a detailed agent- and activity-based demand model, in which travelers have the option to use ride-pooling based on real-time offers of an optimized ride-pooling operation. On the one hand, this approach allows the application of detailed mode-choice models based on agent-level attributes coming from mobiTopp functionalities. On the other hand, existing state-of-the-art ride-pooling optimization can be applied to utilize the full potential of ride-pooling. The introduced interface allows mode choice based on real-time fleet information and thereby does not require multiple iterations per simulated day to achieve a balance of ride-pooling demand and supply. The introduced methodology is applied to a case study of an example model where in total approximately 70,000 trips are performed. Simulations with a simplified mode-choice model with varying fleet size (0–150 vehicles), fares, and further fleet operators’ settings show that (i) ride-pooling can be a very attractive alternative to existing modes and (ii) the fare model can affect the mode shifts to ride-pooling. Depending on the scenario, the mode share of ride-pooling is between 7.6% and 16.8% and the average distance-weighed occupancy of the ride-pooling fleet varies between 0.75 and 1.17.


2021 ◽  
Vol 11 (5) ◽  
pp. 2313
Author(s):  
Inho Lee ◽  
Nakkyun Park ◽  
Hanbee Lee ◽  
Chuljin Hwang ◽  
Joo Hee Kim ◽  
...  

The rapid advances in human-friendly and wearable photoplethysmography (PPG) sensors have facilitated the continuous and real-time monitoring of physiological conditions, enabling self-health care without being restricted by location. In this paper, we focus on state-of-the-art skin-compatible PPG sensors and strategies to obtain accurate and stable sensing of biological signals adhered to human skin along with light-absorbing semiconducting materials that are classified as silicone, inorganic, and organic absorbers. The challenges of skin-compatible PPG-based monitoring technologies and their further improvements are also discussed. We expect that such technological developments will accelerate accurate diagnostic evaluation with the aid of the biomedical electronic devices.


2021 ◽  
Vol 17 (2) ◽  
pp. 1-22
Author(s):  
Jingao Xu ◽  
Erqun Dong ◽  
Qiang Ma ◽  
Chenshu Wu ◽  
Zheng Yang

Existing indoor navigation solutions usually require pre-deployed comprehensive location services with precise indoor maps and, more importantly, all rely on dedicatedly installed or existing infrastructure. In this article, we present Pair-Navi, an infrastructure-free indoor navigation system that circumvents all these requirements by reusing a previous traveler’s (i.e., leader) trace experience to navigate future users (i.e., followers) in a Peer-to-Peer mode. Our system leverages the advances of visual simultaneous localization and mapping ( SLAM ) on commercial smartphones. Visual SLAM systems, however, are vulnerable to environmental dynamics in the precision and robustness and involve intensive computation that prohibits real-time applications. To combat environmental changes, we propose to cull non-rigid contexts and keep only the static and rigid contents in use. To enable real-time navigation on mobiles, we decouple and reorganize the highly coupled SLAM modules for leaders and followers. We implement Pair-Navi on commodity smartphones and validate its performance in three diverse buildings and two standard datasets (TUM and KITTI). Our results show that Pair-Navi achieves an immediate navigation success rate of 98.6%, which maintains as 83.4% even after 2 weeks since the leaders’ traces were collected, outperforming the state-of-the-art solutions by >50%. Being truly infrastructure-free, Pair-Navi sheds lights on practical indoor navigations for mobile users.


2015 ◽  
Vol 738-739 ◽  
pp. 1105-1110 ◽  
Author(s):  
Yuan Qing Qin ◽  
Ying Jie Cheng ◽  
Chun Jie Zhou

This paper mainly surveys the state-of-the-art on real-time communicaton in industrial wireless local networks(WLANs), and also identifys the suitable approaches to deal with the real-time requirements in future. Firstly, this paper summarizes the features of industrial WLANs and the challenges it encounters. Then according to the real-time problems of industrial WLAN, the fundamental mechanism of each recent representative resolution is analyzed in detail. Meanwhile, the characteristics and performance of these resolutions are adequately compared. Finally, this paper concludes the current of the research and discusses the future development of industrial WLANs.


Sign in / Sign up

Export Citation Format

Share Document