Multiple herbicide resistance in a glyphosate-resistant rigid ryegrass (Lolium rigidum) population

Weed Science ◽  
2004 ◽  
Vol 52 (6) ◽  
pp. 920-928 ◽  
Author(s):  
Paul Neve ◽  
Jemma Sadler ◽  
Stephen B. Powles

Surviving rigid ryegrass plants were collected from a cropping field at Pindar, Western Australia (population WALR 50), after inadequate control by glyphosate applied at the normal field rate. Plants were grown to maturity in pots and seeds were collected. Glyphosate dose–response experiments with known susceptible and resistant control populations confirmed the resistant status of the WALR 50 population. The glyphosate rate resulting in 5% mortality (LD50) and GR50(the glyphosate rate required to reduce mean growth of individuals to 50% of the untreated control) values for this population were 1,069 and 217 g ae ha−1, respectively, corresponding to R:S ratios of 3.4 and 1.9 for mortality and growth. In addition, a novel root growth–based assay of glyphosate resistance was developed and validated, giving a root growth GR50R:S ratio of 3.4. A resistance profile was established by assessing population-level survival of WALR 50 after applications at recommended rates of a range of herbicides commonly used for rigid ryegrass control in Australia. High levels of resistance to the acetolactate synthase (ALS)–inhibiting sulfonylurea herbicides chlorsulfuron and sulfometuron, moderate resistance to the acetyl coenzyme A carboxylase (ACCase)–inhibiting herbicide diclofop, and low levels of resistance to the imidazilinone herbicide imazethapyr were found. More detailed dose–response experiments confirmed resistance to chlorsulfuron, sulfometuron, and diclofop. In vitro enzyme-inhibition studies demonstrated that ALS resistance in WALR 50 is due to an insensitive target enzyme and that ACCase resistance is due to a nontarget site–based mechanism. WALR 50 is the first glyphosate-resistant weed population with confirmed resistance to ACCase- and ALS-inhibiting herbicides.

2010 ◽  
Vol 24 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Mechelle J. Owen ◽  
Stephen B. Powles

Glyphosate-resistance evolution in weeds is evident globally, especially in areas where transgenic glyphosate-resistant crops dominate. Resistance to glyphosate is currently known in 16 weed species, including rigid ryegrass in Australia. Following the first report of glyphosate resistance in 1998, there are now 78 documented glyphosate-resistant populations of rigid ryegrass in grain-growing regions of southern Australia. In some regions where glyphosate-resistance evolution has already occurred in rigid ryegrass, transgenic glyphosate-resistant canola was introduced in 2008, further highlighting the need to monitor glyphosate-resistance evolution in weeds. A rigid ryegrass population (WALR70) was collected in 2005 from a crop field in Esperance, Western Australia, after it had survived applications of glyphosate. Dose–response experiments confirmed resistance in the population, with the glyphosate rate resulting in 50% mortality (LD50) for WALR70 being 11 times greater than that for a susceptible biotype. The WALR70 population also had low levels of resistance to some acetyl coenzyme A carboxylase (ACCase)- and acetolactate synthase (ALS)-inhibiting herbicides (diclofop, fluazifop, clodinafop, tralkoxydim, chlorsulfuron, and imazethapyr), but was susceptible to other herbicide modes of action, such as atrazine, trifluralin, and paraquat. Two other rigid ryegrass populations assessed in this study were also confirmed to be resistant to glyphosate. The increasing number of glyphosate-resistant rigid ryegrass populations in Australia is of concern to growers because of the importance of glyphosate in intensive cropping systems and the introduction of glyphosate-resistant canola to this region.


2021 ◽  
Author(s):  
Pranesh Padmanabhan ◽  
Rajat Desikan ◽  
Narendra M Dixit

Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines work predominantly by eliciting neutralizing antibodies (NAbs), how the protection they confer depends on the NAb response to vaccination is unclear. Here, we collated and analysed in vitro dose-response curves of >70 NAbs and constructed a landscape defining the spectrum of neutralization efficiencies of NAbs elicited. We mimicked responses of individuals by sampling NAb subsets of known sizes from the landscape and found that they recapitulated responses of convalescent patients. Combining individual responses with a mathematical model of within-host SARS-CoV-2 infection post-vaccination, we predicted how the population-level protection conferred would increase with the NAb response to vaccination. Our predictions captured the outcomes of vaccination trials. Our formalism may help optimize vaccination protocols, given limited vaccine availability.


Weed Science ◽  
2016 ◽  
Vol 64 (2) ◽  
pp. 207-215 ◽  
Author(s):  
Rupinder Kaur Saini ◽  
Jenna Malone ◽  
Christopher Preston ◽  
Gurjeet S. Gill

Rigid ryegrass, an important annual weed species in cropping regions of southern Australia, has evolved resistance to 11 major groups of herbicides. Dose–response studies were conducted to determine response of three clethodim-resistant populations and one clethodim-susceptible population of rigid ryegrass to three different frost treatments (−2 C). Clethodim-resistant and -susceptible plants were exposed to frost in a frost chamber from 4:00 P.M. to 8:00 A.M. for three nights before or after clethodim application and were compared with plants not exposed to frost. A reduction in the level of clethodim efficacy was observed in resistant populations when plants were exposed to frost for three nights before or after clethodim application. In the highly resistant populations, the survival percentage and LD50were higher when plants were exposed to frost before clethodim application compared with frost after clethodim application. However, frost treatment did not influence clethodim efficacy of the susceptible population. Sequencing of the acetyl coenzyme A carboxylase (ACCase) gene of the three resistant populations identified three known mutations at positions 1781, 2041, and 2078. However, most individuals in the highly resistant populations did not contain any known mutation in ACCase, suggesting the resistance mechanism was a nontarget site. The effect of frost on clethodim efficacy in resistant plants may be an outcome of the interaction between frost and the clethodim resistance mechanism(s) present.


Weed Science ◽  
2016 ◽  
Vol 64 (4) ◽  
pp. 695-704 ◽  
Author(s):  
Yujuan Feng ◽  
Yuan Gao ◽  
Yong Zhang ◽  
Liyao Dong ◽  
Jun Li

Japanese foxtail is a predominant tetraploid grass weed in wheat and oilseed rape fields in eastern China. In China, pyroxsulam is mainly used to manage annual grass weeds, especially those resistant to acetyl coenzyme A carboxylase (ACCase)-inhibiting herbicides. Using dose–response studies, a pyroxsulam-resistant population, ACTC-1, was identified with a resistance index value of 58. Additionally, ACTC-1 was cross-resistant to sulfonylureas, imidazolinones, triazolopyrimidines, pyrimidinyl-benzoates, and sulfonylaminocarbonyl-triazolinones and multiresistant to ACCase and photosystem II inhibitors. Sequence analysis revealed four gene fragments encoding acetolactate synthase (ALS) from ACTC-1, and three from JNXW-1, a pyroxsulam-sensitive population. An Asp-376-Glu substitution was found in ALS1;2 and an Ile-2041-Asn in Acc1;1, which may be responsible for its resistance to pyroxsulam and ACCase inhibitors, respectively. In vitro assays of ALS activity revealed that in ACTC-1, the sensitivity of ALS to pyroxsulam was lower, and the basal ALS activity was twofold higher than that of sensitive population JNXW-1. Additionally, the combined application of pyroxsulam with malathion or piperonyl butoxide increased the sensitivity of ACTC-1 to pyroxsulam, although it could not completely overcome the resistance. It was inferred that both target-site-based resistance and nontarget-site-based resistance may be involved in the resistance to pyroxsulam.


1997 ◽  
Vol 77 (02) ◽  
pp. 376-382 ◽  
Author(s):  
Bruce Lages ◽  
Harvey J Weiss

SummaryThe possible involvement of secreted platelet substances in agonist- induced [Ca2+]i increases was investigated by comparing these increases in aspirin-treated, fura-2-loaded normal platelets and platelets from patients with storage pool deficiencies (SPD). In the presence and absence of extracellular calcium, the [Ca2+]i response induced by 10 µM ADP, but not those induced by 0.1 unit/ml thrombin, 3.3 µM U46619, or 20 µM serotonin, was significantly greater in SPD platelets than in normal platelets, and was increased to the greatest extent in SPD patients with Hermansky-Pudlak syndrome (HPS), in whom the dense granule deficiencies are the most severe. Pre-incubation of SPD-HPS and normal platelets with 0.005-5 µM ADP produced a dose-dependent inhibition of the [Ca2+]i response induced by 10 µ M ADP, but did not alter the [Ca2+]i increases induced by thrombin or U46619. Within a limited range of ADP concentrations, the dose-inhibition curve of the [Ca2+]i response to 10 µM ADP was significantly shifted to the right in SPD-HPS platelets, indicating that pre-incubation with greater amounts of ADP were required to achieve the same extent of inhibition as in normal platelets. These results are consistent with a hypothesis that the smaller ADP-induced [Ca2+]i increases seen in normal platelets may result from prior interactions of dense granule ADP, released via leakage or low levels of activation, with membrane ADP receptors, causing receptor desensitization. Addition of apyrase to platelet-rich plasma prior to fura-2 loading increased the ADP-induced [Ca2+]i response in both normal and SPD-HPS platelets, suggesting that some release of ADP derived from both dense granule and non-granular sources occurs during in vitro fura-2 loading and platelet washing procedures. However, this [Ca2+]i response was also greater in SPD-HPS platelets when blood was collected with minimal manipulation directly into anticoagulant containing apyrase, raising the possibility that release of dense granule ADP resulting in receptor desensitization may also occur in vivo. Thus, in addition to enhancing platelet activation, dense granule ADP could also act to limit the ADP-mediated reactivity of platelets exposed in vivo to low levels of stimulation.


1986 ◽  
Vol 56 (01) ◽  
pp. 035-039 ◽  
Author(s):  
D Collen ◽  
F De Cock ◽  
E Demarsin ◽  
H R Lijnen ◽  
D C Stump

SummaryA potential synergic effect of tissue-type plasminogen activator (t-PA), single-chain urokinase-type plasminogen activator (scuPA) or urokinase on clot lysis was investigated in a whole human plasma system in vitro. The system consisted of a human plasma clot labeled with 125I-fibrinogen, immersed in titrated whole human plasma, to which the thrombolytic agents were added. Clot lysis was quantitated by measurement of released 125I, and activation of the fibrinolytic system in the surrounding plasma by measurements of fibrinogen and α2-antiplasmin.t-PA, scu-PA and urokinase induced a dose-dependent and time-dependent clot lysis; 50 percent lysis after 2 h was obtained with 5 nM t-PA, 20 nM scu-PA and 12 nM urokinase. At these concentrations no significant activation of the fibrinolytic system in the plasma was observed with t-PA and scu-PA, whereas urokinase caused significant α2-antiplasmin consumption and concomitant fibrinogen degradation. The shape of the dose-response curves was different; t-PA and urokinase showed a log linear dose-response whereas that of scu-PA was sigmoidal.


2014 ◽  
Vol 14 (17) ◽  
pp. 1990-2005 ◽  
Author(s):  
Shalini Saxena ◽  
Janupally Renuka ◽  
Variam Jeankumar ◽  
Perumal Yogeeswari ◽  
Dharmarajan Sriram

2015 ◽  
Vol 1718 ◽  
pp. 97-102 ◽  
Author(s):  
Toralf Roch ◽  
Konstanze K. Julich-Gruner ◽  
Axel T. Neffe ◽  
Nan Ma ◽  
Andreas Lendlein

ABSTRACTPolymer-based therapeutic strategies require biomaterials with properties and functions tailored to the demands of specific applications leading to an increasing number of newly designed polymers. For the evaluation of those new materials, comprehensive biocompatibility studies including cyto-, tissue-, and immunocompatibility are essential. Recently, it could be demonstrated that star-shaped amino oligo(ethylene glycol)s (sOEG) with a number average molecular weight of 5 kDa and functionalized with the phenol-derived moieties desaminotyrosine (DAT) or desaminotyrosyl tyrosine (DATT) behave in aqueous solution like surfactants without inducing a substantial cytotoxicity, which may qualify them as solubilizer for hydrophobic drugs in aqueous solution. However, for biomedical applications the polymer solutions need to be free of immunogenic contaminations, which could result from inadequate laboratory environment or contaminated starting material. Furthermore, the materials should not induce uncontrolled or undesired immunological effects arising from material intrinsic properties. Therefore, a comprehensive immunological evaluation as perquisite for application of each biomaterial batch is required. This study investigated the immunological properties of sOEG-DAT(T) solutions, which were prepared using sOEG with number average molecular weights of 5 kDa, 10 kDa, and 20 kDa allowing analyzing the influence of the sOEG chain lengths on innate immune mechanisms. A macrophage-based assay was used to first demonstrate that all DAT(T)-sOEG solutions are free of endotoxins and other microbial contaminations such as fungal products. In the next step, the capacity of the different DAT(T)-functionalized sOEG solutions to induce cytokine secretion and generation of reactive oxygen species (ROS) was investigated using whole human blood. It was observed that low levels of the pro-inflammatory cytokines interleukin(IL)-1β and IL-6 were detected for all sOEG solutions but only when used at concentrations above 250 µg·mL-1. Furthermore, only the 20 kDa sOEG-DAT induced low amounts of ROS-producing monocytes. Conclusively, the data indicate that the materials were not contaminated with microbial products and do not induce substantial immunological adverse effectsin vitro,which is a prerequisite for future biological applications.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Muhammad Imran ◽  
Ahmad Irfan ◽  
Mohammed A. Assiri ◽  
Sajjad H. Sumrra ◽  
Muhammad Saleem ◽  
...  

AbstractThe Aerva plants are exceptionally rich in phytochemicals and possess therapeutics potential. Phytochemical screening shows that Aerva persica (Burm.f.) Merr. contains highest contents i.e., total phenolics, flavonoids, flavonols, tannins, alkaloids, carbohydrates, anthraquinones and glycosides. In-vitro antibacterial and enzymatic (carbonic anhydrase) inhibition studies on methanol extracts of A. persica indicated the presence of biological active constituents within chloroform soluble portions. Investigation in the pure constituents on the chloroform portions of A. persica accomplished by column chromatography, NMR and MS analysis. The bioguided isolation yields four chemical constituents of coumaronochromone family, namely aervin (1-4). These pure chemical entities (1-4) showed significant antibacterial activity in the range of 60.05–79.21 µg/ml against various bacterial strains using ampicillin and ciprofloxacin as standard drugs. The compounds 1-4 showed promising carbonic anhydrase inhibition with IC50 values of 19.01, 18.24, 18.65 and 12.92 µM, respectively, using standard inhibitor acetazolamide. First-principles calculations revealed comprehensive intramolecular charge transfer in the studied compounds 1-4. The spatial distribution of highest occupied and lowest unoccupied molecular orbitals, ionization potential, molecular electrostatic potential and Hirshfeld analysis revealed that these coumaronochromone compounds would be proficient biological active compounds. These pure constituents may be used as a new pharmacophore to treat leaukomia, epilepsy, glaucoma and cystic fibrosis.


Sign in / Sign up

Export Citation Format

Share Document