Screening and Identification of Glufosinate-Degrading Bacteria from Glufosinate-Treated Soils

Weed Science ◽  
2007 ◽  
Vol 55 (6) ◽  
pp. 631-637 ◽  
Author(s):  
Chau-Ling Hsiao ◽  
Chiu-Chung Young ◽  
Ching-Yuh Wang

In order to select efficient and competitive glufosinate-degrading bacteria, two soils which had been treated with glufosinate annually for more than 5 yr were screened. Three strains tolerant to this herbicide were identified by 16S rDNA analysis asBurkholderia sacchari,Serratia marcescens, andPseudomonas psychrotolerans. In addition, a moderately tolerant strain,P. citronellolis, was isolated from a soil which had received glufosinate treatment for only 6 mo. In culture medium containing high concentration of glufosinate, the former three strains showed significant ability to degrade this glutamine synthetase inhibitor, suggesting that glufosinate-degrading bacteria would be readily found in soils after a long-term induction or selection. A subsequent biodegradation experiment showed that 30 and 50% of glufosinate was degraded 7 and 21 d after treatment (DAT), respectively, in sterilized soils inoculated with the above-mentioned three tolerant strains. While more than 30% of the glufosinate in nonsterilized soils was degraded 7 DAT by the indigenous edaphic microbes, inoculation with the three selected strains enhanced glufosinate degradation to nearly 50%. A study on the competition from edaphic microorganisms in soils by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) analysis revealed that within 21 d after inoculation (DAI), the propagation ofB. sacchariandP. psychrotoleranswas not affected, whereas that of the less tolerantP. citronelloliswas inhibited. This observation suggests that a long-term herbicide exposure is a promotive factor in generating bacterial strains having high degradation efficiency and showing vigorous propagation under the competition pressure arising from indigenous microbes.

2002 ◽  
Vol 87 (S2) ◽  
pp. S199-S201 ◽  
Author(s):  
G. W. Tannock

Molecular methods have provided renewed impetus for the analysis of the composition of the intestinal microflora in health and disease. The polymerase chain reaction coupled with denaturing gradient gel electrophoresis provides a method whereby the bacterial communities in large numbers of samples can be compared efficiently and effectively. Altered bacterial populations associated with disease states can then be targeted for further investigation. In the long-term, an ‘abnormal microflora’ might be rectified by the use of probiotics or prebiotics.


2011 ◽  
Vol 343-344 ◽  
pp. 351-356
Author(s):  
Xia Jia ◽  
Chun Juan Zhou

The effect of long-term elevated CO2(as open top chambers) on rhizosphere and bulk bacterial community structure in Pinus sylvestriformis seedlings field was investigated in July, August, and September. The bacterial communities were processed by Denaturing Gradient Gel Electrophoresis (DGGE) analysis of bacterial 16S rDNA fragments amplified by PCR (Polymerase Chain Reaction) from DNA extracted directly from soil. DGGE profiles from rhizosphere samples showed large changes in rhizosphere bacterial community under elevated CO2compared to ambient except for that in September. For bulk samples, bacterial community structure changed when exposed to elevated CO2in three months. With the exception of bulk samples in August, a similitude of bacterial communities structures existed between different elevated CO2concentrations by analyzing UPGMA dendrogram based on Jaccard’s coefficient.


2007 ◽  
Vol 74 (4) ◽  
pp. 1176-1182 ◽  
Author(s):  
Edward J. Hilyard ◽  
Joanne M. Jones-Meehan ◽  
Barry J. Spargo ◽  
Russell T. Hill

ABSTRACT The diversity of indigenous bacteria in sediments from several sites in the Elizabeth River (Virginia) able to degrade multiple polycyclic aromatic hydrocarbons (PAHs) was investigated by the use of classical selective enrichment and molecular analyses. Enrichment cultures containing naphthalene, phenanthrene, fluoranthene, or pyrene as a sole carbon and energy source were monitored by denaturing gradient gel electrophoresis (DGGE) to detect changes in the bacterial-community profile during enrichment and to determine whether the representative strains present were successfully cultured. The DGGE profiles of the final enrichments grown solely on naphthalene and pyrene showed no clear relationship with the site from which the inoculum was obtained. The enrichments grown solely on pyrene for two sample sites had >80% similarity, which suggests that common pyrene-degrading strains may be present in these sediments. The final enrichments grown on fluoranthene and phenanthrene remained diverse by site, suggesting that these strains may be influenced by environmental conditions. One hundred and one isolates were obtained, comprising representatives of the actinomycetes and alpha-, beta-, and gammaproteobacteria, including seven novel isolates with 16S rRNA gene sequences less than 98% similar to known strains. The ability to degrade multiple PAHs was demonstrated by mineralization of 14C-labeled substrate and growth in pure culture. This supports our hypothesis that a high diversity of bacterial strains with the ability to degrade multiple PAHs can be confirmed by the combined use of classical selective enrichment and molecular analyses. This large collection of diverse PAH-degrading strains provides a valuable resource for studies on mechanisms of PAH degradation and bioremediation.


2020 ◽  
Vol 51 (2) ◽  
pp. 125-146
Author(s):  
Nasiruddin Nasiruddin ◽  
Yu Zhangxin ◽  
Ting Zhao Chen Guangying ◽  
Minghui Ji

We grew cucumber in pots in greenhouse for 9-successive cropping cycles and analyzed the rhizosphere Pseudomonas spp. community structure and abundance by PCR-denaturing gradient gel electrophoresis and quantitative PCR. Results showed that continuous monocropping changed the cucumber rhizosphere Pseudomonas spp. community. The number of DGGE bands, Shannon-Wiener index and Evenness index decreased during the 3rd cropping and thereafter, increased up to the 7th cropping, however, however, afterwards they decreased again. The abundance of Pseudomonas spp. increased up to the 5th successive cropping and then decreased gradually. These findings indicated that the structure and abundance of Pseudomonas spp. community changed with long-term cucumber monocropping, which might be linked to soil sickness caused by its continuous monocropping.


2011 ◽  
Vol 3 (1) ◽  
Author(s):  
Lies Indah Sutiknowati

There is an information how to identify hydrocarbon degrading bacteria for bioremediation of marine oil spill. We have Bioremediation treatment for degradation of oil spill on Pari island and need two kind of experiment there are tanks experiment (sampling 0 to 90 days) and semi enclosed system (sampling 0 to 150 days). Biostimulation with nutrients (N and P) was done to analyze biodegradation of hydrocarbon compounds. Experiment design using fertilizer Super IB and Linstar will stimulate bacteria can degrade oil, n-alkane, and alkane as poly aromatic hydrocarbon. The bacteria communities were monitored and analyzed by Denaturing Gradient Gel Electrophoresis (DGGE) and Clone Library; oil chemistry was analyzed by Gas Chromatography Mass Spectrometry (GCMS). DNA (deoxyribonucleic acid) was extracted from colonies of bacteria and sequence determination of the 16S rDNA was amplified by primers U515f and U1492r. Strains had been sequence and had similarity about 90-99% to their closest taxa by homology Blast search and few of them suspected as new species. The results showed that fertilizers gave a significant effect on alkane, PAH and oil degradation in tanks experiment but not in the field test. Dominant of the specific bacteria on this experiment were Alcanivorax, Marinobacter and Prosthecochloris. Keywords: Bioremediation, Biostimulation, DGGE, PAH, Pari Island


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
P. Janczyk ◽  
R. Pieper ◽  
V. Urubschurov ◽  
K. R. Wendler ◽  
W. B. Souffrant

Essential oils (EO) are being considered as possible alternatives to in-feed antibiotic growth promoters in pig nutrition. The effects of an EO mixture consisting of limonene, eugenol and pinene (10.0, 2.0, and 4.8 mg/kg diet, resp.) on gut physiology and ecology were studied in piglets. The experiment was conducted at low (commercial farm) and high hygienic conditions (experimental farm), to elucidate interactions between EO supplementation and husbandry methods. Piglets were weaned at 28 days of age, when they were offered either a control diet (C) or C with EO. Four piglets were sacrificed in each group on day 29, 30, 33 and 39. Digesta from the third distal part of the small intestine and from the colon were sampled and analysed for pH, dry matter, lactic acid, short chain fatty acids and ammonia concentrations. Enterobacteria, enterococci, lactobacilli and yeast counts were obtained by plating. Genomic DNA was extracted from digesta and polymerase chain reaction—denaturing gradient gel electrophoresis was performed. Individual microbial communities were identified at each farm. Age affected the intestinal parameters. No effects of the EO with exception for a significant reduction in colon bacterial diversity at 39 days of age could be recorded at experimental farm.


2015 ◽  
Vol 73 (5) ◽  
pp. 1202-1210 ◽  
Author(s):  
G. Cema ◽  
S. Żabczyński ◽  
A. Ziembińska-Buczyńska

Coke wastewater is known to be relatively difficult for biological treatment. Nonetheless, biofilm-based systems seem to be promising tool for such treatment. That is why a rotating biological contactor (RBC) system focused on the Anammox process was used in this study. The experiment was divided into two parts with synthetic and then real wastewater. It was proven that it is possible to treat coke wastewater with RBC but such a procedure requires a very long start-up period for the nitritation (190 days), as well as for the Anammox process, where stable nitrogen removal over 70% was achieved after 400 days of experiment. Interestingly, it was possible at a relatively low (20.2 ± 2.2 °C) temperature. The polymerase chain reaction–denaturing gradient gel electrophoresis (PCR-DGGE) based monitoring of the bacterial community showed that its biodiversity decreased when the real wastewater was treated and it was composed mainly of GC-rich genotypes, probably because of the modeling influence of this wastewater and the genotypes specialization.


2011 ◽  
Vol 3 (1) ◽  
Author(s):  
Lies Indah Sutiknowati

There is an information how to identify hydrocarbon degrading bacteria for bioremediation of marine oil spill. We have Bioremediation treatment for degradation of oil spill on Pari island and need two kind of experiment there are tanks experiment (sampling 0 to 90 days) and semi enclosed system (sampling 0 to 150 days). Biostimulation with nutrients (N and P) was done to analyze biodegradation of hydrocarbon compounds. Experiment design using fertilizer Super IB and Linstar will stimulate bacteria can degrade oil, n-alkane, and alkane as poly aromatic hydrocarbon. The bacteria communities were monitored and analyzed by Denaturing Gradient Gel Electrophoresis (DGGE) and Clone Library; oil chemistry was analyzed by Gas Chromatography Mass Spectrometry (GCMS). DNA (deoxyribonucleic acid) was extracted from colonies of bacteria and sequence determination of the 16S rDNA was amplified by primers U515f and U1492r. Strains had been sequence and had similarity about 90-99% to their closest taxa by homology Blast search and few of them suspected as new species. The results showed that fertilizers gave a significant effect on alkane, PAH and oil degradation in tanks experiment but not in the field test. Dominant of the specific bacteria on this experiment were Alcanivorax, Marinobacter and Prosthecochloris. Keywords: Bioremediation, Biostimulation, DGGE, PAH, Pari Island


Sign in / Sign up

Export Citation Format

Share Document