Response of Soybean Yield Components to 2,4-D

Weed Science ◽  
2013 ◽  
Vol 61 (1) ◽  
pp. 68-76 ◽  
Author(s):  
Andrew P. Robinson ◽  
Vince M. Davis ◽  
David M. Simpson ◽  
William G. Johnson

Soybean plants exposed POST to 2,4-D can have reduced seed yield depending on the dose and time of exposure, but it is unclear how 2,4-D affects specific yield components. Objectives were to quantify soybean injury, characterize changes in seed yield and yield components of soybean plants exposed to 2,4-D, and determine if seed-yield loss can be estimated from visual assessment of crop injury. Ten rates (0, 0.1, 1.1, 11.2, 35, 70, 140, 280, 560, and 2,240 g ae ha−1) of 2,4-D were applied to Becks brand 342 NRR soybean at three soybean growth stages (V2, V5, or R2). The soybeans were planted near Lafayette, IN and Urbana, IL in 2009 and 2010 and near Fowler, IN in 2009. Twenty percent visual soybean injury was caused by 29 to 109 g ha−12,4-D at 14 d after treatment (DAT) and 109 to 245 g ha−1at 28 DAT. Nonlinear regression models were fit to describe the effect of 2,4-D on seed yield and yield components of soybean. Seed yield was reduced by 5% from 87 to 116 g ha−1and a 10% reduction was caused by 149 to 202 g ha−12,4-D at all application timings. The number of seeds m−2, pods m−2, reproductive nodes m−2, and nodes m−2were the most sensitive yield components. Path analysis indicated that seeds m−2, pods m−2, main stem reproductive nodes m−2, and main stem nodes m−2were the most influential yield components in seed-yield formation. Seed-yield loss was significant (P < 0.0001) and highly correlated (R2= 0.95 to 0.99) to visual soybean injury ratings. A 10% seed-yield loss was caused by 35% soybean injury observed at 14 DAT, whereas a 10% seed-yield loss was a result of 40, 19, and 15% soybean injury observed at 28 DAT when soybean was exposed to 2,4-D at the V2, V5, and R2 growth stages, respectively.

Weed Science ◽  
2013 ◽  
Vol 61 (4) ◽  
pp. 526-536 ◽  
Author(s):  
Andrew P. Robinson ◽  
David M. Simpson ◽  
William G. Johnson

Exposure of soybean to dicamba can result in leaf malformation and sometimes yield loss, but it is unclear how yield components are affected by exposure to low quantities of this herbicide. The objectives were to characterize soybean injury and quantify changes in seed yield and yield components of soybean plants exposed to dicamba, and determine if seed yield loss can be estimated from visual injury ratings. Nine dicamba rates (0, 0.06, 0.23, 0.57, 1.1, 2.3, 4.5, 9.1, and 22.7 g ae ha−1) were applied at three growth stages (V2 – two trifoliates, V5-five trifoliates, or R2-full flowering soybean) to Beck's brand ‘342NRR’ soybean planted near Lafayette, IN, in 2009 and 2010 and near Fowler, IN, in 2009. Visually estimated soybean injury of 20% at the V2, V5, or R2 timing was 0.676 to 0.937 g ha−1dicamba at 14 d after treatment (DAT) and 0.359 to 1.37 g ha−1dicamba at 28 DAT. Seed yield was reduced by 5% from 0.042 to 0.528 g ha−1dicamba and a 10% reduction was caused by 0.169 to 1.1 g ha−1dicamba. The number of seeds m−2, pods m−2, reproductive nodes m−2, and nodes m−2were the most sensitive yield components. Path analysis indicated that dicamba reduced seeds m−2, pods m−2, reproductive nodes m−2, and nodes m−2which were the main causes of seed yield loss from dicamba exposure. The correlation of seed yield loss and visual soybean injury was significant (P < 0.0001) for both the V2 treatment timing (R2= 0.92) and the V5 and R2 treatment timings (R2= 0.91). Early-season injury rating of 8% at the V2 treatment and 2% at the V5 or R2 treatments caused 10% or more yield loss.


2018 ◽  
Vol 32 (5) ◽  
pp. 513-519 ◽  
Author(s):  
Spencer McCown ◽  
Tom Barber ◽  
Jason K. Norsworthy

AbstractIntroduction of the Roundup Ready® Xtend system (Monsanto Co., St. Louis, MO) provides an alternative weed management option for growers, but of concern is the risk of dicamba injury to sensitive crops, particularly soybean from off-target movement and tank contamination. Experiments were conducted to determine the response of soybean to low rates of dicamba over a wide range of application timings. Two glufosinate-resistant varieties (HBK 4950LL–indeterminate and HALO 5.45LL–determinate) commonly grown in Arkansas were chosen for these studies. Two rates of dicamba, 2.18 and 8.75 g ae ha–1(1/256× and 1/64× of the POST labeled rate for dicamba-resistant soybean), were applied at two vegetative (V4, V6) and six reproductive (R1 to R6) growth stages. Compared to the nontreated control, dicamba applied during late vegetative and early reproductive growth of soybean caused leaf injury, plant height reduction, and seed yield loss for both soybean cultivars. Averaged across dicamba rates applied at R1, soybean seed yield was reduced 14% for the HBK 4950LL cultivar and 19% for the HALO 5.45LL cultivar. Averaged over rates, dicamba applied at R1 to the HALO 5.45LL and HBK 4950LL soybean resulted in 48% and 43% visible injury 4 wk after treatment, respectively. Grain yield was similar to that of the nontreated control when dicamba was applied at the later reproductive stages averaged across rates.


1981 ◽  
Vol 97 (1) ◽  
pp. 189-195 ◽  
Author(s):  
D. H. Scarisbrick ◽  
R. W. Daniels ◽  
Mary Alcock

SUMMARYThree spring oil-seed rape cultivars were drilled on five dates during 1979 and 1980. Delayed drilling (1) reduced seed yield, (2) increased the main stem contribution to seed production, and (3) increased the percentage of damaged pods at harvest. The results indicated that cultivars similar to those used in this trial should be drilled between the 3rd week of March and mid-April.


2021 ◽  
Author(s):  
Abdul Fattah ◽  
Idaryani Djamaluddin ◽  
Asriyanti Ilyas ◽  
Muslimin Muslimin ◽  
Andi Nurhayu ◽  
...  

South Sulawesi Province is one of the centers for soybean development in Indonesia. The varieties that are widely planted by farmers in South Sulawesi include Anjasmoro, Argomulyo, Grobogan, Gema, Dering-1, and Burangrang. These varieties have different levels of seed yield and damage levels. This paper aims to provide an overview and information about the types of soybean varieties, the level of pest damage, and the types of pests that cause damage to soybean varieties developed by farmers in South Sulawesi Province. The method used is to collect various information in the form of secondary data and primary data from research results related to soybean varieties, types of pests that damage soybean plants and the level of damage caused by soybean pests in South Sulawes. The results obtained provide information that the highest level of leaf damage caused by Spodoptera litura F. occurred in the Anjasmoro variety 10.94–32.69% followed by Argomulyo 10.16–26.17% and Grobogan 8.61–24.81%. The highest level of pod damage due to pod sucking was found in Burangrang varieties, namely 13.20%, Gema 12.51%, Dering 10.5%, Argomulyo 9.40%, Grobogan 8.50%, and Anjasmoro 7.70%. The level of fruit damage caused by the fruit borer Etiella zinckenella T., the highest occurred in Detam-1 15.71%, Ring 14.50%, Burangrang 10.60%, Gema 10.0%, Argomulyo 8.20%, Grobogan 7.10%, and Anjasmoro 6.70%. The rate of soybean yield loss caused by S. litura F. was the highest at Anjasmoro 8.97%–11.29%, then Grobogan 7.88–12.80%, and Argomulyo 6.77–14.90%. Meanwhile, the percentage of seed yield loss caused by the attack of the pest Nezara viridula L. ranged from 10.0–41.0% for all varieties. Likewise with Riptortus linearis F., the percentage of soybean seed loss caused ranged from 15 to 79% for all varieties.


2010 ◽  
Vol 56 (No. 8) ◽  
pp. 384-392 ◽  
Author(s):  
B. Liu ◽  
X.B. Liu ◽  
C. Wang ◽  
Y.S. Li ◽  
J. Jin ◽  
...  

A 2-year field experiment was conducted under light enrichment and shading conditions to examine the responses of seed yield and yield components distribution across main axis in soybean. The results showed that the maximum increase in seed yield per plant by light enrichment occurred at 27 plants/m<sup>2</sup>, while the most significant reduction in seed yield per plant by shading occurred at 54 plants/m<sup>2</sup>. Light enrichment beginning at early flowering stage decreased seed size on average by 7% while shading increased seed size on average by 9% over densities and cultivars, resulting in a fewer extent compensation in seed yield decrement. Responses to light enrichment and shading occurred proportionately across the main axis node positions despite the differences in the time (15&ndash;20 days) of development of yield components between the high and low node positions. Variation intensity of seed size of three soybeans was dissimilar as a result of changes in the environment during the reproductive period. The small-seed cultivar had the greatest stability in single seed size across the main axis, followed by moderate-seed cultivar, while large-seed cultivar was the least stable. Although maximum seed size may be determined by genetic potential in soybean plants, our results suggested that seed size can still be modified by environmental conditions, and the impact can be expressed through some internal control moderating the final size of most seeds in main stem and in all pods. It indicates that, through redistributing the available resources across main stem to components, soybean plants showed the mechanism, in an attempt to maintain or improve yield in a constantly changing environment.


2015 ◽  
Vol 31 (4) ◽  
pp. 288-299 ◽  
Author(s):  
Strahinja Stepanovic ◽  
Avishek Datta ◽  
Brian Neilson ◽  
Chris Bruening ◽  
Charles Shapiro ◽  
...  

AbstractPropane flaming in combination with cultivation could be a potential alternative tool for weed control in organic soybean production. Field experiments were conducted at the Haskell Agricultural Laboratory of the University of Nebraska-Lincoln (UNL), Concord, NE in 2010, 2011 and 2012 to determine the level of weed control and the response of soybean grain yield and its components to flaming and cultivation within two fertility regimes (FRs) (with and without manure) utilizing flaming equipment developed at the UNL. The treatments included: weed-free control, weedy season-long and different combinations of banded flaming (intra-row), broadcast flaming and mechanical cultivation (inter-row). The treatments were applied at VC (unfolded cotyledon) and V4–V5 (4-leaf–5-leaf) growth stages. Propane doses were 20 and 45 kg ha−1 for the banded and broadcast flaming treatments, respectively. The data were collected for visual ratings of crop injury and weed control at 7 and 28 days after treatment (DAT) at V4–V5 growth stages, weed dry matter at 60 DAT, crop yield and yield components. The annual application of 101 t ha−1 manure did not alter weed community or influence the effectiveness of weed management treatment; however, it decreased soybean yield by 0.25 t ha−1 through an increased weed biomass of 0.16 t ha−1. The weed-free control plots yielded 4.15 t ha−1. The combination of mechanical cultivation and banded flaming applied twice (at VC and V4–V5) was the best treatment resulting in 80–82% weed control and 6–9% crop injury at 28 DAT and 3.41–3.67 t ha−1 yield. Cultivation conducted twice provided only 19% weed control at 28 DAT and 1.75 t ha−1 yield. Soybean plants recovered well after all flaming treatments, with the exception of broadcast flaming conducted twice (28% crop injury at 28 DAT). Combining flaming with cultivation has a potential to effectively control weeds in organic soybean production across a range of FRs.


2016 ◽  
Vol 30 (3) ◽  
pp. 629-638 ◽  
Author(s):  
Ti Zhang ◽  
Eric N. Johnson ◽  
Christian J. Willenborg

Desiccants are currently used to improve lentil dry-down prior to harvest. Applying desiccants at growth stages prior to maturity may result in reduced crop yield and quality, and leave unacceptable herbicide residues in seeds. There is little information on whether various herbicides applied alone or as a tank-mix with glyphosate have an effect on glyphosate residues in harvested seed. Field trials were conducted at Saskatoon and Scott, Saskatchewan, Canada, from 2012 to 2014 to determine whether additional desiccants applied alone or tank mixed with glyphosate improve crop desiccation and reduce the potential for unacceptable glyphosate residue in seed. Glufosinate and diquat tank mixed with glyphosate were the most consistent desiccants, providing optimal crop dry-down and a general reduction in glyphosate seed residues without adverse effects on seed yield and weight. Saflufenacil provided good crop desiccation without yield loss, but failed to reduce glyphosate seed residues consistently. Pyraflufen-ethyl and flumioxazin applied alone or tank mixed with glyphosate were found to be inferior options for growers as they exhibited slow and incomplete crop desiccation, and did not decrease glyphosate seed residues. Based on results from this study, growers should apply glufosinate or diquat with preharvest glyphosate to maximize crop and weed desiccation, and minimize glyphosate seed residues.


Author(s):  
SK Datta ◽  
MAR Sarker ◽  
FMJ Uddin

The experiment was carried out to study the effect of variety and level of phosphorus fertilizer on the yield and yield components of lentil at the Agronomy Field Laboratory, Bangladesh Agricultural University, Mymensingh during October 2009 to March 2010. Three lentil varieties viz. BINA masur 2, BINA masur 3 and BARI masur 4 and four levels of phosphorus viz. 0 kg P ha-1 (P0), 15 kg P ha-1 (P15), 30 kg P ha-1 (P30) and 45 kg P ha-1 (P45) were used in this experiment. Varieties showed significant influence on the all characters except plant height. The highest seed yield (1165 kg ha-1) was observed in BARI masur 4, and the lowest seed yield (1028 kg ha-1) was found in BINA masur 3. Phosphorus fertilizer had a significant effect on all the plant characters studied except 1000 seed weight. The highest seed yield (1222kg ha-1) was observed in P45 (45 kg P ha-1) treatment and the lowest seed yield (893 kg ha-1) was found in P0 treatment. In case of interaction, effect of cultivar and phosphorus fertilizer doses had a significant effect on all the plant characters studied except seeds pod-1 and 1000-seed weight. The highest seed yield (1317 kg ha-1) was obtained in V3 X P45 treatment, and the lowest seed yield (830 kg ha-1) was observed in V2 X P0 treatment combination. Among the varieties BINA masur 2 and BARI masur 4 were superior to BINA masur 3 in respect of yield performance with 30 kg P ha-1. BARI masur 4 fertilized with 30 kg P ha-1 produced the highest seed yield. Int. J. Agril. Res. Innov. & Tech. 3 (1): 78-82, June, 2013 DOI: http://dx.doi.org/10.3329/ijarit.v3i1.16097


Sign in / Sign up

Export Citation Format

Share Document