Reduced Tillage, Rye Residues, and Herbicides Influence Weed Suppression and Yield of Pumpkins

2004 ◽  
Vol 18 (4) ◽  
pp. 953-961 ◽  
Author(s):  
Heidi S. Rapp ◽  
Robin R. Bellinder ◽  
H. Chris Wien ◽  
Francoise M. Vermeylen

Field experiments were conducted to study the effects of various tillage and mulching practices on fruit maturity and weed suppression in pumpkins. Conventional tillage (CT), disking, no tillage with rye removed (RR), no tillage with standing rye (SR), and strip tillage (ST) were evaluated with and without ethalfluralin plus halosulfuron (1.5 plus 0.036 kg ai/ha, respectively) applied preemergence. In 2001, when heavy rain after herbicide application caused significant crop injury, the herbicides delayed maturity and significantly reduced yields of mature pumpkins within each herbicide treatment, total yields did not differ with tillage. In 2002, weed populations were significantly greater than those in 2001, and in 2002, regardless of herbicides, yields of mature fruit were greater in tillage treatments with higher rye residues (SR, ST). Although weed populations were less in one year than the other, herbicides provided effective control in both seasons, and RR, ST, and SR effectively suppressed weeds compared with CT. Averaged over treatments, greater yield losses were attributable to weed competition (42%) in 2002 than to herbicide injury (32%) in 2001.

2006 ◽  
Vol 20 (3) ◽  
pp. 622-626 ◽  
Author(s):  
Patrick W. Geier ◽  
Phillip W. Stahlman ◽  
John C. Frihauf

Field experiments were conducted during 2003 and 2004 to compare the effectiveness of KIH-485 and S-metolachlor for PRE weed control in no-tillage and conventional-tillage corn. Longspine sandbur control increased as KIH-485 or S-metolachlor rates increased in conventional-tillage corn, but control did not exceed 75% when averaged over experiments. Both herbicides controlled at least 87% of green foxtail with the exception of no-tillage corn in 2004, when KIH-485 was more effective than S-metolachlor at lower rates. Palmer amaranth control ranged from 85 to 100% in 2003 and 80 to 100% in 2004, with the exception of only 57 to 76% control at the lowest two S-metolachlor rates in 2004. Puncturevine control exceeded 94% with all treatments in 2003. In 2004, KIH-485 controlled 86 to 96% of the puncturevine, whereas S-metolachlor controlled only 70 to 81%. Mixtures of atrazine with KIH-485 or S-metolachlor generally provided the most effective control of broadleaf weeds studied.


Plant Disease ◽  
2007 ◽  
Vol 91 (8) ◽  
pp. 973-978 ◽  
Author(s):  
W. L. Gavassoni ◽  
G. L. Tylka ◽  
G. P. Munkvold

Two field experiments were conducted in central Iowa to assess the effects of tillage on Heterodera glycines dissemination and reproduction and soybean (Glycine max) yield. Plots in both experiments were artificially infested with equivalent numbers of H. glycines cysts. In one experiment, plots were left noninfested or received aggregated or uniform infestation, and a susceptible soybean cultivar was grown for 3 years. By the end of the first growing season and through the second, H. glycines population densities were consistently greater (P ≤ 0.05) in uniformly infested plots than in plots with aggregated infestations. No differences in soybean yield among the treatments were detected. In a second experiment, a 1-m2 area of each plot was infested with H. glycines cysts, susceptible soybeans were grown for four seasons, and crop residue was managed with either ridge-, conventional-, reduced-, or no-tillage. After 1 year, nematode population densities were significantly (P ≤ 0.05) greater in conventional- and reduced-tillage treatments than in no- and ridge-tillage treatments. After 2 years, H. glycines had been disseminated 6.9 m from the infestation site in conventional- and reduced-tillage treatments but only 0.5 and 1.4 m for no-tillage and ridge-tillage treatments, respectively. After 3 years, H. glycines population densities were 10 times greater in conventional- and reduced-tillage treatments than in the no-tillage treatment; conventional-tillage was the only treatment with yield significantly lower (P ≤ 0.05) than the noninfested control. Aggregation of H. glycines eggs was greater (P ≤ 0.05) in no- and ridge-tillage treatments than in conventional- and reduced-tillage treatments. Results indicate tillage can quickly disseminate H. glycines in newly infested fields, facilitating more rapid nematode reproduction and subsequent yield loss.


2011 ◽  
Vol 57 (1) ◽  
pp. 21-30
Author(s):  
Božena Šoltysová ◽  
Martin Danilovič

Tillage in Relation to Distribution of Nutrients and Organic Carbon in the SoilChanges of total nitrogen, available phosphorus, available potassium and soil organic carbon were observed on gleyic Fluvisols (locality Milhostov) at the following crops: grain maize (2005), spring barley (2006), winter wheat (2007), soya (2008), grain maize (2009). The experiment was realized at three soil tillage technologies: conventional tillage, reduced tillage and no-tillage. Soil samples were collected from three depths (0-0.15 m; 0.15-0.30 m; 0.30-0.45 m). The ratio of soil organic carbon to total nitrogen was also calculated.Soil tillage affects significantly the content of total nitrogen in soil. The difference between the convetional tillage and soil protective tillages was significant. The balance showed that the content of total nitrogen decreased at reduced tillage by 5.2 rel.%, at no-tillage by 5.1 rel.% and at conventional tillage by 0.7 rel.%.Similarly, the content of organic matter in the soil was significantly affected by soil tillage. The content of soil organic carbon found at the end of the research period was lower by 4.1 rel.% at reduced tillage, by 4.8 rel.% at no-tillage and by 4.9 rel.% at conventional tillage compared with initial stage. The difference between the convetional tillage and soil protective tillages was significant.Less significant relationship was found between the soil tillage and the content of available phosphorus. The balance showed that the content of available phosphorus was increased at reduced tillage (by 4.1 rel.%) and was decreased at no-tillage (by 9.5 rel.%) and at conventional tillage (by 3.3 rel.%).Tillage did not significantly affect the content of available potassium in the soil.


Weed Science ◽  
1989 ◽  
Vol 37 (2) ◽  
pp. 233-238 ◽  
Author(s):  
J. Anthony Mills ◽  
William W. Witt

Field experiments were conducted to evaluate the interactions of tillage systems with imazaquin and imazethapyr on weed control and soybean injury and yield. Control of jimsonweed, common cocklebur, ivyleaf morningglory, velvetleaf, and giant foxtail from imazaquin and imazethapyr in conventional tillage was generally equal to or greater than control in no-tillage. However, under limited rainfall, weed control in no-tillage was generally equal to or greater than control in conventional tillage. Reductions in soybean heights due to herbicide treatment were evident in both tillage systems in 1985 and 1986 but not in. Soybean yields were reduced in 1985 from imazaquin at 140, 210, and 250 g/ha and imazethapyr at 105 and 140 g/ha. Yields were not reduced in 1986 and. Imazaquin and imazethapyr appear to provide adequate control of jimsonweed, common cocklebur, ivyleaf morningglory, velvetleaf, and giant foxtail in conventional and no-till systems.


Weed Science ◽  
1999 ◽  
Vol 47 (1) ◽  
pp. 67-73 ◽  
Author(s):  
J. Dorado ◽  
J. P. Del Monte ◽  
C. López-Fando

In a semiarid Mediterranean site in central Spain, field experiments were conducted on a Calcic Haploxeralf (noncalcic brown soil), which had been managed with three crop rotations and two tillage systems (no-tillage and conventional tillage) since 1987. The crop rotations consisted of barley→vetch, barley→sunflower, and a barley monoculture. The study took place in two growing seasons (1992–1994) to assess the effects of management practices on the weed seedbank. During this period, spring weed control was not carried out in winter crops. In the no-tillage system, there was a significant increase in the number of seeds of different weed species: anacyclus, common purslane, corn poppy, knotted hedge-parsley, mouse-ear cress, spring whitlowgrass, tumble pigweed, venus-comb, andVeronica triphyllos.Conversely, the presence of prostrate knotweed and wild radish was highest in plots under conventional tillage. These results suggest large differences in the weed seedbank as a consequence of different soil conditions among tillage systems, but also the necessity of spring weed control when a no-tillage system is used. With regard to crop rotations, the number of seeds of knotted hedge-parsley, mouse-ear cress, and spring whitlowgrass was greater in the plots under the barley→vetch rotation. Common lambsquarters dominated in the plots under the barley→sunflower rotation, whereas venus-comb was the most frequent weed in the barley monoculture. Larger and more diverse weed populations developed in the barley→vetch rotation rather than in the barley→sunflower rotation or the barley monoculture.


2012 ◽  
Vol 58 (No. 12) ◽  
pp. 540-544 ◽  
Author(s):  
O. Mikanová ◽  
T. Šimon ◽  
M. Javůrek ◽  
M. Vach

 Soil quality and fertility are associated with its productivity, and this in turn is connected to the soil biological activity. To study these effects, well designed long-term field experiments that provide comprehensive data sets are the most applicable. Four treatments (tillage methods) were set up: (1) conventional tillage (CT); (2) no tillage (NT); (3) minimum tillage + straw (MTS), and (4) no tillage + mulch (NTM). Our objective was to assess the relationships between soil microbial characteristics and winter wheat yields under these different techniques of conservation tillage within a field experiment, originally established in 1995. The differences in average grain yields over time period 2002–2009 between the variants were not statistically significant. Organic carbon in the topsoil was higher in plots with conservation tillage (NT, MTS, and NTM), than in the conventional tillage plots. There was a statistically significant correlation (P ≤ 0.01) between the grain yields and organic C content in topsoil.  


1988 ◽  
Vol 15 (2) ◽  
pp. 94-97 ◽  
Author(s):  
D. L. Colvin ◽  
B. J. Brecke ◽  
E. B. Whitty

Abstract Effects of minimum tillage (MT) production techniques on peanut (Arachis hypogaea L.) root growth and yield were unknown. Field experiments were therefore conducted during 1984 near Williston and Marianna, FL and during 1985 near Williston and Jay, FL to evaluate effects of surface and subsurface tillage on peanut production. Soil types were a Zuber loamy sand (fine, mixed hyperthermic Ultic Hapludalf) at Williston, a Chipola sandy loam (loamy, siliceous, thermic Arenic Hapludult) at Marianna, and a Red Bay sandy loam (fine, loamy, siliceous, thermic Rhodic Paleudult) at Jay. The Sunrunner peanut cultivar was planted using a modified twin 23 cm row spacing and seeded at a rate of 140 kg/ha. Eight tillage systems that included combinations of conventional tillage, strip-tillage, and no-tillage with and without subsoiling or subsurface slitting were evaluated. Peanuts germinated and grew well except in no-tillage plots that received no subsurface tillage. Without surface or subsurface tillage there was not sufficient soil disturbance to insure proper seed-soil contact or seed cover. Generally, plots that received some degree of conventional tillage yielded better than plots with no surface preparation (4090 vs. 3760 kg/ha avg.). Minimum tillage plots yielded numerically less than conventional plots but in only a few cases were significant differences in yield noted. At most locations, minimum tillage plots that received no subsurface tillage developed a “lazy root syndrome” in which the few roots produced were quite shallow and grew near the soil surface. These treatments yielded less (3680 vs. 4010 kg/ha avg.) than those with conventional seedbed preparation or the minimum tillage treatments receiving subsurface tillage. Root strength and penetration measurements roughly reflect the same trends as peanut yields. The slit-tillage system resulted in peanut yields equal to or better than those obtained with chisel point subsoiling. Slitter wear and breakage problems were encountered but overall, the subsurface slit system appears to be a functional alternative to chisel point subsoiling.


1993 ◽  
Vol 7 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Luis E. Lanfranconi ◽  
Robin R. Bellinder ◽  
Russell W. Wallace

Experiments were conducted to evaluate the effect of tillage, rye residue levels, and control strategies on weed suppression and potato yield. Reduced tillage (RT) yields in 1989 were lower than in conventional tillage (CT) due to high hairy galinsoga populations. However, in 1990, potato yields were greater in RT when early emerging weeds were suppressed. Increasing residue levels up to 2300 kg ha−1had no effect on weeds or yields in either year. In a separate study, preemergence herbicides (linuron plus metolachlor, 1.7 kg ai ha−1each) applied 10 d after planting (DAP) in reduced tillage controlled weeds for 6 wk, but efficacy decreased after hilling. Metribuzin applied postemergence (0.19 kg ai ha−1) 7 d after hilling controlled late germinating weeds. Potato yields were greatest when the preemergence herbicides were applied.


2003 ◽  
Vol 21 (1) ◽  
pp. 105-110 ◽  
Author(s):  
H.A. Acciaresi ◽  
H.V. Balbi ◽  
M.L. Bravo ◽  
H.O. Chidichimo

Field experiments were carried out in 1999 and 2000 to investigate the effects of conventional (CT) and no-tillage (NT) systems, interacting with three herbicide dose levels and three nitrogen (N) levels on weed growth and wheat production of two varieties. There was a higher grain yield for NT system compared with CT in one year. CT weed biomass was lower than from NT weed biomass, in both varieties. No differences on wheat biomass and grain yield were observed between full and reduced herbicide rates. N fertilizer increased wheat biomass and grain yield significantly. Only N medium level had an effect upon weed biomass with respect to non-fertilized plots, while the highest fertilization rate lowered weed biomass. Conventional tillage, reduced herbicide rates and nitrogen fertilization were effective ways of limiting weed production in wheat.


Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 635
Author(s):  
Jolanta Bojarszczuk ◽  
Janusz Podleśny

The aim of the paper was to determine weed infestation expressed by weeds number and weed weight and other index under a three different tillage system: no-tillage (NT), reduced tillage (RT), and ploughing tillage (CT) in two legume species crops: pea and narrowed-leaved lupine. The research proved that growing legume under no-tillage conditions caused the increasing weed infestation. Weather conditions in each of the study years were shown to influence the weed infestation. The dry weight of weeds was higher in narrow-leaved lupine by 7% in flowering stage assessment and by 6% before harvest than in pea crop. The weeds number in the conventional tillage system in the flowering stage in pea and lupine crops was 24 and 26 plants·m−2, respectively, under the reduced tillage conditions it was 33 and 29% higher, while under no-tillage it was 58 and 67% higher. In all tillage systems the dominant species were Chenopodium album L., Viola arvensis L., Anthemis arvensis L., and Cirsium arvense L. The results prove that soil tillage system affect weed infestation of legume crops.


Sign in / Sign up

Export Citation Format

Share Document