Sweetpotato Tolerance to Thifensulfuron Applied Postemergence

2007 ◽  
Vol 21 (4) ◽  
pp. 928-931 ◽  
Author(s):  
Andrew W. MacRae ◽  
David W. Monks ◽  
Roger B. Batts ◽  
Allan C. Thornton

An experiment was conducted at two locations in 2003 and 2004 to determine the timing and rate of thifensulfuron that is safe to use on sweetpotato. Thifensulfuron was applied 1, 2, and 4 wk after transplanting (WAP) in 2003 and 4, 6, and 8 WAP in 2004. Within each timing, thifensulfuron treatments were 1.1, 2.1, 3.2, 4.3, and 8.5 g ai/ha plus a weed-free control. The 1 and 2 WAP timings of thifensulfuron reduced the yield of number 1 roots greater than 25%. The 4, 6, and 8 WAP timings had less than 15% reduction in yield, with the 6 WAP timing reducing number 1 roots and total yield 10% or less. When 4.3 g/ha of thifensulfuron was applied 4 WAP, total yield was reduced 13%. The 6 and 8 WAP timings had little yield reduction, with no rate response observed. Application of 4.3 g/ha of thifensulfuron at 6 WAP would allow for control of problematic weed species while limiting potential yield loss. Yield loss from a 4 WAP application of thifensulfuron may in fact be a delay in crop maturity that could be recovered if the sweetpotato harvest was delayed to allow for the optimal amount of number 1 grade roots to be produced.

1994 ◽  
Vol 8 (1) ◽  
pp. 114-118 ◽  
Author(s):  
R. Gordon Harvey ◽  
Clark R. Wagner

Herbicide efficacy trials in field corn, sweet corn, and soybean were conducted at three locations in Wisconsin over a 6-yr period. Percent weed pressure (WP) was determined by visually estimating the contribution of all weed species present to the total crop and weed volume in each plot. Crop yields in each plot were measured. Percent crop yield reduction (YLDRED) was calculated by comparing mean yields of individual treatments with those of the highest yielding treatment in each trial. Linear regression analyses of YLDRED and WP data from 1640 field corn and 138 sweet corn treatments were significant. Nonlinear regression analysis of YLDRED and WP data from all 1374 soybean treatments was significant; however, a linear regression of those 1154 soybean treatments with WP ratings of 30 or less produced a more easily interpreted regression equation.


Weed Science ◽  
2013 ◽  
Vol 61 (3) ◽  
pp. 500-507 ◽  
Author(s):  
Nathanael D. Fickett ◽  
Chris M. Boerboom ◽  
David E. Stoltenberg

Glyphosate applied POST can provide a high level of efficacy on many weed species in soybean, but delayed application beyond optimal weed growth stages might fail to fully protect yield potential. Further, we do not have a good understanding of the extent to which delayed glyphosate application and its associated yield loss is occurring on-farm. Our goal was to characterize on-farm weed communities in glyphosate-resistant soybean just prior to glyphosate application and estimate potential yield loss associated with early-season soybean-weed competition. In field surveys conducted across 64 site-yr in southern Wisconsin in 2008 and 2009, common lambsquarters, velvetleaf, dandelion,Polygonumspp., andAmaranthusspp. were the five most abundant broadleaf weed species across site-years, present in 92, 69, 64, 42, and 50% of all fields, respectively, at average densities of 14, 5, 5, 14, and 10 plants m−2, respectively. Average height of these species was 21 cm or less at or near the time of glyphosate application. Grass and sedge species occurred in 95% of fields at an average density of 41 plants m−2and height of 21 cm. The mean and median values of total weed density across site-years were 101 and 41 plants m−2, with heights of 19 and 17 cm, respectively. Recommended height for treatment is 15 cm. Glyphosate application occurred on average at V3 to V4 soybean growth stage, which is later than V2 soybean typically targeted to protect yield. Average yield loss predicted by WeedSOFT® was 5% with a mean economic loss of $47 ha−1. Predicted yield loss was greater than 5% on one-fourth of the site-years, all of which were treated at V4 soybean or later. The maximum predicted yield loss was 27%. These results suggest that glyphosate was applied at weed height and soybean growth stages that were greater than optimal to protect yield in many fields across southern Wisconsin. A soil-residual herbicide applied PRE, or a more timely POST application of glyphosate would alleviate the majority of these losses.


Plant Disease ◽  
1998 ◽  
Vol 82 (12) ◽  
pp. 1381-1385 ◽  
Author(s):  
Hervé Lot ◽  
Véronique Chovelon ◽  
Sylvie Souche ◽  
Brigitte Delecolle

This study was conducted to determine the effect of two potyviruses, onion yellow dwarf virus (OYDV) and leek yellow stripe virus (LYSV), on the symptoms, growth, and potential yield loss of garlic (Allium sativum). For 2 consecutive years, the impact on leaf length, pseudostem diameter, and bulb weight was evaluated after mechanical inoculation of cultivars Messidrome, Germidour, and Printanor, the three main garlic cultivars grown in France. The reduction in bulb weight due to OYDV ranged from 39% for Germidour to about 60% for the two other cultivars. For LYSV, the reduction in bulb weight was less on Messidrome (17%) and Germidour (26%) than on Printanor (54%). Coinfection with both viruses further reduced growth and bulb weight. When cloves originating from bulbs infected by each virus alone or a mixture of both viruses were planted, results indicated that such chronic infection induced further yield reduction. An assay designed to evaluate the role of LYSV inoculation date on yield revealed that yield losses were the lowest for late-season infections. However, yield loss was greater than 30% when the inoculation was performed at the end of April, the time when natural contamination generally occurs in southern France. A comparison of the impact of mixed infections of OYDV and LYSV from different origins suggested that the isolates did not differ significantly in their effects on yield loss.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 516B-516 ◽  
Author(s):  
N.R. Burgos ◽  
L. Brandenberger ◽  
C. Thomas ◽  
L. Wells ◽  
V. Shivrain ◽  
...  

Southernpea is a major vegetable crop in Arkansas and Oklahoma for commercial production and home gardens. Complete weed control is necessary for this crop in commercial production to keep the peas free of contaminants and achieve high harvest efficiency. Several weeds like pigweed, cocklebur, velvetleaf, lambsquarters, hophornbeam copperleaf, nightshade, nutsedge, and morninglories are difficult to control in this crop because of limited herbicide options. Sandea (halosulfuron) is an excellent herbicide for nutsedge control and has activity on most of the weeds mentioned above. It has both soil and foliar activity. Sandea is labeled for several vegetable crops and southernpea may have enough tolerance to Sandea to warrant a label expansion. Experiments were conducted in Arkansas and Oklahoma between 2002 and 2005 to determine the tolerance of southernpea to Sandea and its efficacy on some weed species. In Oklahoma, trials were conducted in LeFlore County and at the Bixby Research Station in 2002 and 2003. Treatments consisted of various herbicides applied preemergence (PRE) or postemergence (POST), among which were some Sandea treatments. The doses of Sandea tested ranged from 0.024 to 0.048 lb a.i./A with some treatments applied with Basagran (bentazon), POST. Preemergence treatments were applied at 20 GPA and POST treatments at 30 GPA. Experimental units were arranged in randomized complete block design with four replications. The cultivar used was Early Scarlet. Plots were comprised of four rows, spaced either 30 or 36 inches, depending on location, 15 ft long. The crop at Bixby was irrigated, but not at LeFlore. In Arkansas, two experiments were conducted in 2005 at the Vegetable Station in Kibler. One experiment was setup in a split-plot design, with four replications, with cultivar as mainplot and Sandea treatments as subplot. Eleven advanced breeding lines and Early Scarlet were used. Four Sandea treatments, using doses of 0.048 and .096 lb ai/A applied either PRE, at 1 to 2-trifoliate (early POST), and at 3- to 4-trifoliate (late POST) were tested. The second experiment compared the responses of 16 advanced breeding lines and Early Scarlet to 0.096 lb a.i./A Sandea applied PRE. Plot size at Kibler consisted of 4 rows, spaced 36 inches, 20 ft long. Herbicide treatments were applied at 20 GPA spray volume and the crop was sprinkler irrigated as needed. In Oklahoma, the commercial rate of Sandea (0.032 to 0.048 lb a.i.) did not cause any injury to southernpea when applied PRE regardless of availability of irrigation. However, when applied POST, significant stunting (up to about 20%) of plants was observed in both locations. This level of injury did not cause significant yield loss. The trial at Bixby could not be harvested due to excessive pigweed biomass later in the season. Sandea controlled Palmer amaranth and carpetweed >90% when applied PRE, but had no activity on these species when applied POST. Conversely, Sandea had excellent activity (100%) on common cocklebur when applied POST, but ineffective when applied PRE. Trials in Arkansas were strictly for tolerance evaluation so no weed control data was collected. In Arkansas, the PRE timing was also safer than POST when 0.096 lb ai Sandea was used. The 11 advanced lines tested in trial 1 were among the top 15 lines selected for tolerance to Sandea from a preliminary screen. These selected lines still showed different levels of tolerance to high rates of Sandea, but may not show any difference among each other at the recommended rates. The best lines were 00-609 and 00-178, which showed no yield reduction when treated with 0.096 lb ai Sandea PRE. All advanced lines had higher yield than Early Scarlet without herbicide treatment. In trial 2, 01-103, 01-180, and 01-181 had 0% to 10% yield loss when treated with 0.096 lb ai Sandea, PRE. All three had similar or greater yield than Early Scarlet. The commercial standard incurred about 20% to 30% yield loss from the high dose of Sandea applied PRE in both trials in Arkansas. Sandea is safe for cowpea, PRE at recommended doses. However, some advanced lines can tolerate high rates of Sandea. Some weeds are controlled by Sandea PRE, but not POST and vice versa.


Weed Science ◽  
2020 ◽  
pp. 1-29
Author(s):  
Lauren M. Schwartz-Lazaro ◽  
Lovreet S. Shergill ◽  
Jeffrey A. Evans ◽  
Muthukumar V. Bagavathiannan ◽  
Shawn C. Beam ◽  
...  

Abstract Potential effectiveness of harvest weed seed control (HWSC) systems depends upon seed shatter of the target weed species at crop maturity, enabling its collection and processing at crop harvest. However, seed retention likely is influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed shatter phenology in thirteen economically important broadleaf weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to four weeks after physiological maturity at multiple sites spread across fourteen states in the southern, northern, and mid-Atlantic U.S. Greater proportions of seeds were retained by weeds in southern latitudes and shatter rate increased at northern latitudes. Amaranthus species seed shatter was low (0 to 2%), whereas shatter varied widely in common ragweed (Ambrosia artemisiifolia L.) (2 to 90%) over the weeks following soybean physiological maturity. Overall, the broadleaf species studied shattered less than ten percent of their seeds by soybean harvest. Our results suggest that some of the broadleaf species with greater seed retention rates in the weeks following soybean physiological maturity may be good candidates for HWSC.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 896
Author(s):  
Qing Ye ◽  
Xiaoguang Yang ◽  
Wenjuan Xie ◽  
Junmeng Yao ◽  
Zhe Cai

During the rice growing season, farmers’ decisions about cropping systems and seed varieties directly affect the utilization of heat resource, and eventually affect the potential yield. In this study, we used the hourly accumulated temperature model to calculate the available heat resource as well as the effective heat resource in southern China. We conducted a spatiotemporal analysis of the heat resource effectiveness during rice growing season and an impact assessment of heat resource effectiveness on rice potential yield and cereal yield reduction. The results showed that, during the period of 1951–2015, heat resource effectiveness generally declined in the rice cropping area of southern China. And this decrease worsened during the most recent three decades compared with the period of 1951–1980. A strong correlation was detected between heat resource effectiveness and rice potential yield in the study area. When the effective heat resource during the growing season increased by 1 °C·d, rice potential yield would increase by 14 kg ha−1. For each percentage increase in heat resource effectiveness, the rice potential yield reduction rate would go down by 0.65%. This agro-climatological study aims to offer a scientific basis for rice production decisions in southern China, such as when to plant, which varieties to choose and so on.


Plant Disease ◽  
2020 ◽  
Vol 104 (5) ◽  
pp. 1477-1486
Author(s):  
Bramwel W. Wanjala ◽  
Elijah M. Ateka ◽  
Douglas W. Miano ◽  
Jan W. Low ◽  
Jan F. Kreuze

In this study, the effect of a Kenyan strain of Sweetpotato leaf curl virus (SPLCV) and its interactions with Sweetpotato feathery mottle virus (SPFMV) and Sweetpotato chlorotic stunt virus (SPCSV) on root yield was determined. Trials were performed during two seasons using varieties Kakamega and Ejumula and contrasting in their resistance to sweetpotato virus disease in a randomized complete block design with 16 treatments replicated three times. The treatments included plants graft inoculated with SPLCV, SPFMV, and SPCSV alone and in possible dual or triple combinations. Yield and yield-related parameters were evaluated at harvest. The results showed marked differences in the effect of SPLCV infection on the two varieties. Ejumula, which is highly susceptible to SPFMV and SPCSV, suffered no significant yield loss from SPLCV infection, whereas Kakamega, which is moderately resistant to SPFMV and SPCSV, suffered an average of 47% yield loss from SPLCV, despite only mild symptoms occurring in both varieties. These results highlight the variability in yield response to SPLCV between sweetpotato cultivars as well as a lack of correlation of SPLCV-related symptoms with yield reduction. In addition, they underline the lack of correlation between resistance to the RNA viruses SPCSV and SPFMV and the DNA virus SPLCV. [Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .


2003 ◽  
Vol 83 (2) ◽  
pp. 319-326 ◽  
Author(s):  
B. L. Johnson

Growth compensation of dwarf sunflower (Helianthus annuus L.) hybrids to low initial stands, later stand losses, or plant defoliation has not been reported regarding replanting decisions and crop insurance yield loss assessment. Three experiments were conducted to study the affect of stand reduction, defoliation, and row spacing on dwarf sunflower yield and quality when grown in eastern North Dakota. Experiment 1 evaluated stand reduction (0, 25, 50 and 75%) applied at growth stages (V4, R1 and R6) in 15, 45 and 76 cm spaced rows. Row spacing interactions with stand reduction and growth stage were not significant for yield indicating growth stage and stand reduction effects on yield response were independent of row spacing. In exp. 2, significant growth stage (V4, V8, R1, R2, R3, R5 and R6) by stand reduction (0, 12, 25, 37, 50, 62 and 75%) interaction showed stand reduction at vegetative growth stages not influencing yield, but as maturity progressed yield reductions became greater with increased stand reduction. Achene weight increased with increasing stand reduction at vegetative and early reproductive stages. A reciprocal relationship was noted between achene weight and achene oil content where oil content decreased as achene weight increased. Interaction of growth stage (R1 and R6) and defoliation (0, 25, 50, 75 and 100%) in exp. 3 indicated greater reduction in yield, test weight, 1000-achene weight, and achene oil conte nt as defoliatin increased at growth stage R6. Yield compensating ability of dwarf sunflower is dependent on type and level of damage and growth stage of occurrence, with total yield reduction considering all effects. Key words: Sunflower, Helianthus annuus L., row spacing, stand reduction, defoliation


2020 ◽  
Vol 21 (4) ◽  
Author(s):  
Yosep S. Mau ◽  
Antonius Ndiwa ◽  
Shirly Oematan

Abstract. Mau YS, Ndiwa ASS, Oematan SS. 2020. Brown spot disease severity, yield and yield loss relationships in pigmented upland rice cultivars from East Nusa Tenggara, Indonesia. Biodiversitas 21: 1625-1634. Brown spot is one of the most devastating diseases of rice, which could lead to total yield loss. The disease has a worldwide distribution, more specifically in areas where water supply is scarce, most specifically in the dry upland areas. Almost all stages of rice are affected by the disease, where leaves and grains are mostly affected. Considerable differences exist in susceptibility to brown spot among rice varieties, which may cause a large variation in yield loss caused by the disease. Therefore, the resistance level of rice varieties and their yield reduction has to be regularly evaluated and updated. There are only a few reports on the relationship between brown spot severity with yield and yield loss of upland rice, and is even lacking in pigmented upland rice. The objectives of the present study were to assess the brown spot severity and resistance level in pigmented upland rice cultivars from East Nusa Tenggara Province, Indonesia, and to elucidate their relationships with yield and yield reduction. Twenty four pigmented upland rice genotypes were evaluated in the field during May to October 2019, and their disease responses and yields were recorded. Disease severity was observed weekly and used to calculate Area Under the Disease Progress Curve (AUDPC) for comparison among the genotypes. The relationships between disease severity and AUDPC with yield and yield loss were also examined. The results showed significant variation in brown spot severity and AUDPC, ranging from, respectively, 11.11% to 40.70% and 398.42%-days to 1081.30%-days. Yields and yield losses of test genotypes also varied substantially. Yields under diseased-free and diseased plots ranged from, respectively, 2.34 t ha-1 to 6.13 t ha-1 and 1.68 t ha-1 to 3.74 t ha-1 while yield loss was between 10.46% and 56.15%. Six genotypes were moderately resistant, four genotypes were moderately susceptible and 14 genotypes were susceptible to brown spot. Neither disease severity nor AUDPC had a linear relationship with yield but both exhibited positive and linear relationships with yield loss.


1999 ◽  
Vol 124 (1) ◽  
pp. 99-105 ◽  
Author(s):  
Claudio M. Dunan ◽  
Philip Westra ◽  
Frank D. Moore

A simulation model was built as a decision aid for management of five weed species in direct seeded irrigated onion (Allium cepa L.). The model uses the state variable approach and simulations are driven by temperature and sunlight as photosynthetically active radiation (PAR). It predicts yield reduction caused by competition for PAR according to the ratio of crop leaf area index (LAI) to weed LAI and respective light extinction coefficients (k). Input variables are plant density by species and average number of leaves by species. Number of leaves per plant is used by the model to provide an estimate of initial leaf area per plant. The model calculates initial species LAIs by multiplying species density times average leaf area per plant. The model accurately describes competitive interactions, taking into account respective plant densities, time of emergence, and time of weed removal. It permits economic evaluation of management factors such as handweeding, chemical weed control, herbicide phytotoxicity due to early application, and control of weed flushes during the season. The model is also used to evaluate mechanisms of plant competition for sunlight. In a sensitivity analysis, onion yield loss was more sensitive to weed PAR interception than to PAR use efficiency, the latter a species-dependent constant in the model.


Sign in / Sign up

Export Citation Format

Share Document