Effects of Hydroxyapatite on Titanium Foam as a Bone Ingrowth Surface in Acetabular Shells: A Canine Study

Author(s):  
William M. Mihalko ◽  
Craig Howard ◽  
Fred Dimaano ◽  
Nena Dimaano ◽  
Monica Hawkins
2020 ◽  
pp. 313-317
Author(s):  
A.I. Kovtunov ◽  
Yu.Yu. Khokhlov ◽  
S.V. Myamin

Titanium—aluminum, titanium—foam aluminum composites and bimetals obtained by liquid-phase methods, are increasingly used in industry. At the liquid-phase methods as result of the reaction diffusion of titanium and aluminum is formed transitional intermetallic layer at the phase boundary of the composite, which reduces the mechanical properties of titanium and composite. To reduce the growth rate of the intermetallic layer between the layers of the composite and increase its mechanical properties, it is proposed to alloy aluminum melt with nickel. The studies of the interaction of titanium and molten aluminum alloyed with nickel made it possible to establish the effect of temperature and aluminizing time on the thickness, chemical and phase compositions of the transition intermetallic layer. The tests showed the effect of the temperature of the aluminum melt, the nickel concentration on the strength properties of titanium—aluminum bimetal.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 724
Author(s):  
Amilton Iatecola ◽  
Guilherme Arthur Longhitano ◽  
Luiz Henrique Martinez Antunes ◽  
André Luiz Jardini ◽  
Emilio de Castro Miguel ◽  
...  

Cobalt-base alloys (Co-Cr-Mo) are widely employed in dentistry and orthopedic implants due to their biocompatibility, high mechanical strength and wear resistance. The osseointegration of implants can be improved by surface modification techniques. However, complex geometries obtained by additive manufacturing (AM) limits the efficiency of mechanical-based surface modification techniques. Therefore, plasma immersion ion implantation (PIII) is the best alternative, creating nanotopography even in complex structures. In the present study, we report the osseointegration results in three conditions of the additively manufactured Co-Cr-Mo alloy: (i) as-built, (ii) after PIII, and (iii) coated with titanium (Ti) followed by PIII. The metallic samples were designed with a solid half and a porous half to observe the bone ingrowth in different surfaces. Our results revealed that all conditions presented cortical bone formation. The titanium-coated sample exhibited the best biomechanical results, which was attributed to the higher bone ingrowth percentage with almost all medullary canals filled with neoformed bone and the pores of the implant filled and surrounded by bone ingrowth. It was concluded that the metal alloys produced for AM are biocompatible and stimulate bone neoformation, especially when the Co-28Cr-6Mo alloy with a Ti-coated surface, nanostructured and anodized by PIII is used, whose technology has been shown to increase the osseointegration capacity of this implant.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Claus Moseke ◽  
Katharina Wimmer ◽  
Markus Meininger ◽  
Julia Zerweck ◽  
Cornelia Wolf-Brandstetter ◽  
...  

AbstractTo develop implants with improved bone ingrowth, titanium substrates were coated with homogeneous and dense struvite (MgNH4PO4·6H2O) layers by means of electrochemically assisted deposition. Strontium nitrate was added to the coating electrolyte in various concentrations, in order to fabricate Sr-doped struvite coatings with Sr loading ranging from 10.6 to 115 μg/cm2. It was expected and observed that osteoclast activity surrounding the implant was inhibited. The cytocompatibility of the coatings and the effect of Sr-ions in different concentrations on osteoclast formation were analyzed in vitro. Osteoclast differentiation was elucidated on morphological, biochemical as well as on gene expression level. It could be shown that moderate concentrations of Sr2+ had an inhibitory effect on osteoclast formation, while the growth of osteoblastic cells was not negatively influenced compared to pure struvite surfaces. In summary, the electrochemically deposited Sr-doped struvite coatings are a promising approach to improve bone implant ingrowth.


2016 ◽  
Vol 52 (4) ◽  
pp. 242-250 ◽  
Author(s):  
Malcolm Graham Ness

ABSTRACT The literature about tibial tuberosity advancement surgery in dogs and humans informed the development of a version of the operation using a wedge-shaped implant of titanium foam. Computer-assisted drawing and stereolithography was used to create instruments and implants that were evaluated by cadaver surgery. A trial, involving 26 client-owned dogs with lameness due to cranial cruciate ligament failure, was started. Follow-up was done by clinical and radiographic examination after 4 wk and clinical examination again 6–11 mo after surgery. The titanium foam implant maintained tibial tuberosity advancement easily and effectively. The same major complication occurred in 2 of the first 6 cases before, a slightly modified technique was used to treat 20 dogs without complication. At mid-term follow-up (6–11 mo), 20/26 dogs (77%) had returned to full function, two dogs (7.7%) had acceptable function, two dogs (7.7%) could not be evaluated due to recent contra lateral modified Maquet procedure surgery, and two (7.7%) dogs had died for reasons unrelated to the study. This is the first clinical report of the use of titanium foam in veterinary orthopaedics. Modified Maquet procedure appears to be an effective treatment for lameness due to failure of the cranial cruciate ligament in dogs.


1998 ◽  
Vol 31 ◽  
pp. 26
Author(s):  
L. Labey ◽  
H. Van Campenhout ◽  
J. Vander Sloten ◽  
R. Van Audekercke ◽  
G. Van der Perre ◽  
...  

2010 ◽  
Vol 130 (7) ◽  
pp. 844-850 ◽  
Author(s):  
Atsushi Suehiro ◽  
Shigeru Hirano ◽  
Yo Kishimoto ◽  
Bernard Rousseau ◽  
Tatsuo Nakamura ◽  
...  

2006 ◽  
Vol 309-311 ◽  
pp. 1023-1026
Author(s):  
E.T. Uzumaki ◽  
C.S. Lambert

In this study, porous bioceramics (titanium foam with diamond-like carbon coatings, glass foam and zirconium oxide foam) were produced using expansion in vacuum. The porosity, the pore size and pore morphology can be adjusted in agreement with the application. The different 3D structures were obtained by varying the parameters of the process. The microstructure and morphology of the porous materials were observed by scanning electron microscopy (SEM) and optical microscopy. The foam exhibit an open-cell structure with interconnected macropores, which provide the potential for tissue ingrowths and the transport of the body fluids.


Sign in / Sign up

Export Citation Format

Share Document