scholarly journals Overlapped joints in Textile Reinforced Concrete with UHPC matrix: An experimental investigation

2021 ◽  
Vol 54 (4) ◽  
Author(s):  
Edoardo Rossi ◽  
Norbert Randl ◽  
Peter Harsányi ◽  
Tamás Mészöly

AbstractWhen producing a Textile Reinforced Concrete structure or element, joining separate textile layers might be a necessity, driven for example by the limited dimensions of commercially available fabrics. A possible way of producing such joints is by overlapping different textile sheets. Overlapped joints, however, need to be cast with particular attention since they might represents weak elements of the structure, leading to premature failure. An experimental campaign was performed, aimed at identifying the effects of a symmetric vs non-symmetric arrangement of the textile fabrics within the overlapping length and tensile characteristics of the matrix on such type of joints. Fifteen specimens, produced using a fully epoxy impregnated carbon textile fabric and an Ultra High Performance Concrete (UHPC) matrix, were tested under tension in a uniaxial setup and measurements were performed using a Digital Image Correlation system. The in-plane and out-of-plane behaviour of each specimen was studied. The results highlight the importance of producing symmetric elements as well as the beneficial effects that the admixture of short dispersed steel fibres to the cementitious matrix provide to such kind of joints

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4863
Author(s):  
Edoardo Rossi ◽  
Norbert Randl ◽  
Tamás Mészöly ◽  
Peter Harsányi

The increasing demand on the performance of existing structures, together with their degradation, is among the main drivers towards the development of innovative strengthening solutions. While such solutions are generally aimed at increasing the load-bearing capacity of structural elements, serviceability limit states also play an important role in ensuring the performance and durability of the structure. An experimental campaign was performed to assess the cracking behaviour of reinforced concrete beams strengthened with different typologies of Textile-Reinforced Concrete. The specimens were monitored using Digital Image Correlation (DIC) technology in order to obtain a quantitative evaluation of the evolution of the crack pattern throughout the whole test. Results show the beneficial effects of this retrofitting strategy both at ultimate limit states and serviceability limit states, provide detailed insights on the progression of damage in the specimens and highlight how different parameters impact the cracking behaviour of the tested elements.


2014 ◽  
Vol 1054 ◽  
pp. 99-103 ◽  
Author(s):  
Filip Vogel ◽  
Ondřej Holčapek ◽  
Petr Konvalinka

This article deals with cement matrix for textile reinforced concrete. The main topic of this article is study of the development of the mechanical properties of the cement matrix. It was studied cube compressive strength and tensile strength in bending. The cement matrix has a similar composition as high performance concrete. Commonly used concrete was made to compare with the cement matrix. The cubes and prisms were made for the experimental program. The mechanical properties were studied at the age 12, 15, 18 and 21 hours and 1, 2, 3, 7, 14, 21 and 28 days.


2014 ◽  
Vol 923 ◽  
pp. 142-145 ◽  
Author(s):  
Magdaléna Novotná ◽  
Michaela Kostelecká ◽  
Julie Hodková ◽  
Miroslav Vokáč

In recent years, textile reinforced concrete (TRC) is at the beginning of industrial production mainly in Germany and relates especially to facade panels and concrete footbridges. The subtle panels with a minimum thickness of coverage layer can be designed due to the textile reinforcement, which is resistant to corrosion. Furthermore, a long durability is expected in case of these structures. The textile reinforcement with the fine-grained ultra-high performance concrete (UHPC) enables to produce concrete elements with a minimum thickness. Therefore, the concrete element with up to 70 % lower weight compared to element with conventional reinforcement can be produced and significant environmental savings can be achieved (reducing the consumption of non-renewable raw materials, transport energy, reduced dead load acting on the supporting structure, etc.).


2017 ◽  
Vol 259 ◽  
pp. 238-243 ◽  
Author(s):  
Jakub Řepka ◽  
Tomáš Vlach ◽  
Lenka Laiblová ◽  
Petr Hájek ◽  
Michal Ženíšek ◽  
...  

Use of high performance concrete with reinforcement made of technical textile is increasing and new applications are being found. This paper presents new technology for the lightening of the panels made of textile reinforced concrete, which is being developed. The main focus of this research is to produce concrete elements suitable for use as facade panels with the least possible weight and environmental impact. Mechanical characteristics were measured on testing specimens with thickness of 18 mm with lightening representing 47% of their volume. Minimum thickness of concrete was 4 mm and therefore the reinforcement was covered by approximately 1.5 mm of concrete matrix. The strength of experimental test panels was measured in four-point bending stress test. Due to one-sided lightening and asymmetrical cross-section therefore, the tests were performed in both directions. For better interpretation of the results were the specimens of lightened panels tested alongside non-lightened specimens with the same thickness. Based on measured values, maximal dimensions of lightened facade panels were designed.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2127
Author(s):  
Richard Fürst ◽  
Eliška Fürst ◽  
Tomáš Vlach ◽  
Jakub Řepka ◽  
Marek Pokorný ◽  
...  

Textile-reinforced concrete (TRC) is a material consisting of high-performance concrete (HPC) and tensile reinforcement comprised of carbon roving with epoxy resin matrix. However, the problem of low epoxy resin resistance at higher temperatures persists. In this work, an alternative to the epoxy resin matrix, a non-combustible cement suspension (cement milk) which has proven stability at elevated temperatures, was evaluated. In the first part of the work, microscopic research was carried out to determine the distribution of particle sizes in the cement suspension. Subsequently, five series of plate samples differing in the type of cement and the method of textile reinforcement saturation were designed and prepared. Mechanical experiments (four-point bending tests) were carried out to verify the properties of each sample type. It was found that the highest efficiency of carbon roving saturation was achieved by using finer ground cement (CEM 52.5) and the pressure saturation method. Moreover, this solution also exhibited the best results in the four-point bending test. Finally, the use of CEM 52.5 in the cement matrix appears to be a feasible variant for TRC constructions that could overcome problems with its low temperature resistance.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 63
Author(s):  
Anna L. Mina ◽  
Michael F. Petrou ◽  
Konstantinos G. Trezos

The scope of this paper is to investigate the performance of ultra-high performance fiber reinforced concrete (UHPFRC) concrete slabs, under projectile impact. Mixture performance under impact loading was examined using bullets with 7.62 mm diameter and initial velocity 800 m/s. The UHPFRC, used in this study, consists of a combination of steel fibers of two lengths: 6 mm and 13 mm with the same diameter of 0.16 mm. Six composition mixtures were tested, four UHPFRC, one ultra-high performance concrete (UHPC), without steel fibers, and high strength concrete (HSC). Slabs with thicknesses of 15, 30, 50, and 70 mm were produced and subjected to real shotgun fire in the field. Penetration depth, material volume loss, and crater diameter were measured and analyzed. The test results show that the mixture with a combination of 3% 6 mm and 3% of 13 mm length of steel fibers exhibited the best resistance to projectile impact and only the slabs with 15 mm thickness had perforation. Empirical models that predict the depth of penetration were compared with the experimental results. This material can be used as an overlay to buildings or to construct small precast structures.


2018 ◽  
Vol 183 ◽  
pp. 02005
Author(s):  
Ezio Cadoni ◽  
Matteo Dotta ◽  
Daniele Forni

The paper presents the results obtained on cylindrical Ultra High Performance Fibre Reinforced Concrete specimens with diameter of 30mm and a height of 60mm under compression at high stress rate (1.7–2.3 TPa/s). Four different percentages of fibre reinforcement are considered (1, 2, 3, and 4% fibre content) and compared with the results of the matrix (UHPC). A slight reduction of the strength and fracture time with the introduction of fibres is observed. The experimental results are analysed and discussed with the intent to better understand the mechanical behaviour of UHPFRC materials in case of dynamic event under service loading conditions.


2021 ◽  
Vol 28 (2) ◽  
pp. 54-72
Author(s):  
Abd-al-Salam Al-Hazragi ◽  
Assim Lateef

This article investigates the behaviour of strengthened concrete columns using jacketing ultra-high-performance fiber reinforced concrete (UHPFRC) and carbon fiber-reinforced polymer (CFRP) under uniaxial loaded. The jacket was connected to the column core using shear connectors and (CFRP) fixed as a strip on the tension zone between the column cores and the jacketing. Seven column samples of square cross-section (120 x120) mm at the midsection with overall length of 1250 mm were cast using normal strength concrete (NSC) and having similar longitudinal and transverse reinforcement. The samples were made and tested under axial load at eccentricity equal to 120 mm up to failure. Test parameters were the thickness of jackets (25 and 35) mm and the width of CFRP (0,8, and 12) cm. Column specimens were tested, one of them was reference without any strengthening, and the other specimens divided into two groups (A, and B), and each group included three specimens based on the parameters. Group (A) has UHPFRC jacket thickness 25 mm and CFRP width (0,8, and 12) cm respectively, and group (B) has UHPFRC jacket thickness 35 mm and CFRP width (0,8, and 12) cm respectively. The outcomes of the article show that increasing the thickness of jacket, and width of CFRP lead to increase in the load carrying capacity about (110.5%,168.4%, and 184.2%) for group A, and (157.9%,226.3%, and 263.2%) for group B compared with the reference column due to delay in the appearance of cracks and their distribution. The mid-height lateral displacement of columns was decreased about (66.6%,42.3%, and 35.9%) for group A, and (46.15%,38.46%, and 32.3%) for group B, also the axial deformation of specimens decreased about (71.7%,60.86%, and 55.86%) for group A, and (65.5%,60.5%, and 53.4) for group B compared with the reference column. The ductility of columns that were strengthened with UHPFRC jacket only was increased about (13.67%,19.66%) for thickness(25,35) mm respectively, because of that UHPFRC jacket was contented on steel fibers, and the percentage decrease of ductility was about (5.1%,and 12%) for group (A), (1%,and 9.4%) for group (B) when bonded CFRP in the tension zone with width (8 ,and 12) cm respectively. The results show improvement in the initial and secant stiffness when, increased the thickness of jacket, and width of CFRP because of increase in the size of columns and improvement in the modulus of elasticity. The toughness increase was about (273.97%,301.55%, and 304.5%) for group A, and (453.69%,511.93%, and 524.28%) for group B compared with the reference column because of increase in the size of specimens and delay the appearance of cracks.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2246 ◽  
Author(s):  
Hyeong-Yeol Kim ◽  
Young-Jun You ◽  
Gum-Sung Ryu ◽  
Kyung-Taek Koh ◽  
Gi-Hong Ahn ◽  
...  

This paper deals with flexural strengthening of reinforced concrete (RC) slabs with a carbon textile reinforced concrete (TRC) system. The surface coating treatment was applied to a carbon grid-type textile to increase the bond strength. Short fibers were incorporated into the matrix to mitigate the formation of shrinkage-induced cracks. The tensile properties of the TRC system were evaluated by a direct tensile test with a dumbbell-type grip method. The tensile test results indicated that the effect of the surface coating treatment of the textile on the bonding behavior of the textile within the TRC system was significant. Furthermore, the incorporation of short fibers in the matrix was effective to mitigate shrinkage-induced crack formation and to improve the tensile properties of the TRC system. Six full-scale slab specimens were strengthened with the TRC system and, subsequently, failure tested. The ultimate load-carrying capacity of the strengthened slabs was compared with that of an unstrengthened slab as well as the theoretical solutions. The failure test results indicated that the stiffness and the ultimate flexural capacity of the strengthened slab were at least 112% and 165% greater, respectively, than that of the unstrengthened slab. The test results further indicated that the strengthening effect was not linearly proportional to the amount of textile reinforcement.


Sign in / Sign up

Export Citation Format

Share Document