scholarly journals Effect of TRC and F/TRC Strengthening on the Cracking Behaviour of RC Beams in Bending

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4863
Author(s):  
Edoardo Rossi ◽  
Norbert Randl ◽  
Tamás Mészöly ◽  
Peter Harsányi

The increasing demand on the performance of existing structures, together with their degradation, is among the main drivers towards the development of innovative strengthening solutions. While such solutions are generally aimed at increasing the load-bearing capacity of structural elements, serviceability limit states also play an important role in ensuring the performance and durability of the structure. An experimental campaign was performed to assess the cracking behaviour of reinforced concrete beams strengthened with different typologies of Textile-Reinforced Concrete. The specimens were monitored using Digital Image Correlation (DIC) technology in order to obtain a quantitative evaluation of the evolution of the crack pattern throughout the whole test. Results show the beneficial effects of this retrofitting strategy both at ultimate limit states and serviceability limit states, provide detailed insights on the progression of damage in the specimens and highlight how different parameters impact the cracking behaviour of the tested elements.

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1248 ◽  
Author(s):  
Alessandro P. Fantilli ◽  
Francesco Tondolo ◽  
Bernardino Chiaia ◽  
Guillaume Habert

If supplementary cementitious materials (SCMs) are used as binders, the environmental impact produced by cement-based composites can be reduced. Following the substitution strategy to increase sustainability, several studies have been carried out with the aim of measuring the mechanical properties of different concrete systems, in which a portion of Portland cement was substituted with SCMs, such as fly ashes. On the other hand, studies on the structural behavior of reinforced concrete (RC) elements made with SCMs are very scarce. For this reason, in this paper, a new procedure is introduced with the aim of fulfil a new limit state of sustainability, in accordance with the serviceability and ultimate limit states required by building codes. Although the environmental impact of concrete decreases with the reduction of cement content, the proposed approach shows that the carbon dioxide emission of an RC beam is not a monotonic function of the substitution rate of cement with SCMs. On the contrary, there are favorable values of such substitution rates, which fall within a well-defined range.


2021 ◽  
Vol 54 (4) ◽  
Author(s):  
Edoardo Rossi ◽  
Norbert Randl ◽  
Peter Harsányi ◽  
Tamás Mészöly

AbstractWhen producing a Textile Reinforced Concrete structure or element, joining separate textile layers might be a necessity, driven for example by the limited dimensions of commercially available fabrics. A possible way of producing such joints is by overlapping different textile sheets. Overlapped joints, however, need to be cast with particular attention since they might represents weak elements of the structure, leading to premature failure. An experimental campaign was performed, aimed at identifying the effects of a symmetric vs non-symmetric arrangement of the textile fabrics within the overlapping length and tensile characteristics of the matrix on such type of joints. Fifteen specimens, produced using a fully epoxy impregnated carbon textile fabric and an Ultra High Performance Concrete (UHPC) matrix, were tested under tension in a uniaxial setup and measurements were performed using a Digital Image Correlation system. The in-plane and out-of-plane behaviour of each specimen was studied. The results highlight the importance of producing symmetric elements as well as the beneficial effects that the admixture of short dispersed steel fibres to the cementitious matrix provide to such kind of joints


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4092
Author(s):  
Kamil Bacharz ◽  
Barbara Goszczyńska

The paper reports the results of a comparative analysis of the experimental shear capacity obtained from the tests of reinforced concrete beams with various static schemes, loading modes and programs, and the shear capacity calculated using selected models. Single-span and two-span reinforced concrete beams under monotonic and cyclic loads were considered in the analysis. The computational models were selected based on their application to engineering practice, i.e., the approaches implemented in the European and US provisions. Due to the changing strength characteristics of concrete, the analysis was also focused on concrete contribution in the shear capacity of reinforced concrete beams in the cracked phase and on the angle of inclination of diagonal struts. During the laboratory tests, a modern ARAMIS digital image correlation (DIC) system was used for tracking the formation and development of diagonal cracks.


2011 ◽  
Vol 243-249 ◽  
pp. 1461-1465
Author(s):  
Chuan Min Zhang ◽  
Chao He Chen ◽  
Ye Fan Chen

The paper makes an analysis of the reinforced concrete beams with exterior FRP Shell in Finite Element, and compares it with the test results. The results show that, by means of this model, mechanical properties of reinforced concrete beams with exterior FRP shell can be predicted better. However, the larger the load, the larger deviation between calculated values and test values. Hence, if more accurate calculation is required, issues of contact interface between the reinforced concrete beams and the FRP shell should be taken into consideration.


2021 ◽  
Vol 93 (1) ◽  
pp. 16-25
Author(s):  
P.D. DEMINOV ◽  

The estimate of failure probability on the inclined section from the action of transverse forces, as well as the total probability of the limit States of reinforced concrete beams with probabilistic strength parameters lying on an elastic Foundation model V.Z. Vlasov-P.L. Pasternak, possessing stochastic properties. Probabilistic characteristics of the transverse force and its distribution density are constructed for a Foundation beam resting on an elastic base with two random characteristics, loaded with a quasi-stationary random load, taking into account the probabilistic nature of the strength properties of concrete and reinforcement. It is shown that if the spectral densities of the bed and load coefficients are fractional rational functions, the deflection correlation functions and, accordingly, the deflection variance are calculated using the residue theory.


2010 ◽  
Vol 37 (8) ◽  
pp. 1045-1056 ◽  
Author(s):  
Christopher Suffern ◽  
Ahmed El-Sayed ◽  
Khaled Soudki

This paper reports experimental data on the structural performance of disturbed regions in reinforced concrete beams with corrosion damage to the embedded steel stirrups. A total of 15 reinforced concrete beams were constructed and tested. The test beams were 350 mm deep, 125 mm wide, and 1850 mm long. The beams were tested in three-point bending under a simply supported span of 1500 mm. Nine beams had the embedded stirrups subjected to accelerated corrosion. The test variables were the corrosion damage level and the shear span-to-depth ratio. The test results indicated that the corroded beams exhibited reduced shear strength in comparison to the uncorroded control specimens. The shear strength reduction was up to 53%. Furthermore, the reduction in shear strength due to the corrosion was found to be greater at smaller shear span-to-depth ratios.


2017 ◽  
Vol 23 (6) ◽  
pp. 806-813 ◽  
Author(s):  
Inmaculada MARTÍNEZ-PÉREZ ◽  
Juozas VALIVONIS ◽  
Remigijus ŠALNA ◽  
Alfonso COBO-ESCAMILLA

The building of structures from steel fibre reinforced concrete (SFRC) in the external and conventional rein­forced concrete (RC) in the internal layer represents an economical alternative of structures effectively using SFRC. The paper presents test results of flexural behaviour of layered beams with SFRC external layers and RC internal layer. The behaviour of these beams is compared to test results of SFRC and conventional RC beams. The test results show, that the flexural load capacity for all series of beams is nearly similar, but the deflections of layered beams are less comparing to monolithic ones. It also been shown that the equations indicated in the Eurocode 2 can be used to design the flexural reinforcement in layered SFRC beams.


Sign in / Sign up

Export Citation Format

Share Document