scholarly journals Clay calcination technology: state-of-the-art review by the RILEM TC 282-CCL

2021 ◽  
Vol 55 (1) ◽  
Author(s):  
Theodore Hanein ◽  
Karl-Christian Thienel ◽  
Franco Zunino ◽  
Alastair T. M. Marsh ◽  
Matthias Maier ◽  
...  

AbstractThe use of calcined clays as supplementary cementitious materials provides the opportunity to significantly reduce the cement industry’s carbon burden; however, use at a global scale requires a deep understanding of the extraction and processing of the clays to be used, which will uncover routes to optimise their reactivity. This will enable increased usage of calcined clays as cement replacements, further improving the sustainability of concretes produced with them. Existing technologies can be adopted to produce calcined clays at an industrial scale in many regions around the world. This paper, produced by RILEM TC 282-CCL on calcined clays as supplementary cementitious materials (working group 2), focuses on the production of calcined clays, presents an overview of clay mining, and assesses the current state of the art in clay calcination technology, covering the most relevant aspects from the clay deposit to the factory gate. The energetics and associated carbon footprint of the calcination process are also discussed, and an outlook on clay calcination is presented, discussing the technological advancements required to fulfil future global demand for this material in sustainable infrastructure development.

2012 ◽  
Vol 2012 (1) ◽  
pp. 000055-000062
Author(s):  
Richard C. Kullberg ◽  
Bradley L. Phillip

The key to reaching multi-decade package lifetimes and device reliability is to not just take a snap shot with a RGA and declaring a part passed per MIL-STD-883. It requires a deep understanding of the sources of unwanted gases in a package, characterizing their true flow rates within, without and through the package system, and carefully choosing processes and materials, including getters, to manage the unwanted gases. This is true whether the package is hermetic or non-hermetic. A multi-step process is discussed to include identifying the gas sources, the species present and their quantities, modeling the true quantities of gas generated over the lifetime of the package, and removing it, either through process or materials. When package service lifetimes reach decades, traditional understandings start to fall apart and careful quantitative analysis is rewarded. Getters play a key role in attaining multi-decade lifetimes. Getter selection and sizing is discussed. Included in the discussion will be a brief synopsis of the current state of the art of gettering technology.


Author(s):  
Tanvir Qureshi ◽  
Abir Al-Tabbaa

Concrete is one of the most used materials in the world with robust applications and increasing demand. Despite considerable advancement in concrete and cementitious materials over last centuries, infrastructure built in the present world with these materials, such as dams, roads, bridges, tunnels and buildings requires intensive repair and maintenance throughout its design life. Self-healing concrete and cementitious materials, which have the ability to recover after initial damage, have the potential to address these challenges. Self-healing technology in concrete and cementitious materials can mitigate the unnecessary repair and maintenance of built infrastructure as well as overall CO2 emission due to cement production. This chapter provides the state-of-the-art of self-healing concrete and cementitious materials, mainly focusing on autogenic or intrinsic self-healing using fibre, shrinkable polymers, minerals and supplementary cementitious materials, and autonomic self-healing using non-traditional concrete materials such as microscale to macroscale capsule as well as vascular systems with polymeric, mineral and bacterial agents.


2021 ◽  
Vol 11 (11) ◽  
pp. 4904
Author(s):  
Devan Atkinson ◽  
Thorsten Hermann Becker

Digital Image Correlation (DIC) has found widespread use in measuring full-field displacements and deformations experienced by a body from images captured of it. Stereo-DIC has received significantly more attention than two-dimensional (2D) DIC since it can account for out-of-plane displacements. Although many aspects of Stereo-DIC that are shared in common with 2D DIC are well documented, there is a lack of resources that cover the theory of Stereo-DIC. Furthermore, publications which do detail aspects of the theory do not detail its implementation in practice. This literature gap makes it difficult for newcomers to the field of DIC to gain a deep understanding of the Stereo-DIC process, although this knowledge is necessary to contribute to the development of the field by either furthering its capabilities or adapting it for novel applications. This gap in literature acts as a barrier thereby limiting the development rate of Stereo-DIC. This paper attempts to address this by presenting the theory of a subset-based Stereo-DIC framework that is predominantly consistent with the current state-of-the-art. The framework is implemented in practice as a 202 line MATLAB code. Validation of the framework shows that it performs on par with well-established Stereo-DIC algorithms, indicating it is sufficiently reliable for practical use. Although the framework is designed to serve as an educational resource, its modularity and validation make it attractive as a means to further the capabilities of DIC.


2021 ◽  
Vol 22 ◽  
pp. 21-28
Author(s):  
Zaid Ali Abdulhussein ◽  
Katalin Kopecskó

The supplementary cementitious materials (SCMs) have recognized many of the beneficial influences on concrete ability to resist the penetration of chloride ions, such as fly ash, slag, silica fume, metakaolin, and other natural pozzolans; this benefit has primarily been ascribed to the refined pore structure that results from the appropriate use of SCMs, which, in turn, results in reduced permeability and ionic diffusivity. The paper illustrates the state-of-the-art research findings on; (1) the classification of the SCMs and physicochemical properties; (2) the influences of SCMs on cement binder and the pore structure under chloride ion permeability; (3) the influences of the SCMs on the carbonation process of the cement binder that aims to determine the optimum relationship between SCMs and concrete transport properties. The interesting experimental investigations of the combined influence of chloride and carbonate permeation in cement binder that implement the latest methods in different curing conditions, types, and level contents of the SCMs will yield new scientific results and proposals for the industrial applications auxiliary materials.


2021 ◽  
Vol 16 (4) ◽  
pp. 3-28
Author(s):  
Amnah Y. Alqenaee ◽  
Ali M. Memari ◽  
Maryam Hojati

ABSTRACT 3D printing of cementitious material can provide an affordable, sustainable, and optimized approach for the construction of homes, without compromising quality or craftsmanship. While most of the current research and development efforts in this field are focused on cement-based concrete printing, this paper focuses on the current state-of-the-art literature review of designing and developing a sustainable clay-based mixture design that mainly includes clay, sand, straw, lime, and water. The goal of this paper is to bridge the gap between typical traditional earth construction, specifically cob construction, and emerging 3D printing of cementitious materials. The specific objective of this paper is to offer some possible changes in the typical cob mixture so that it can be used for 3D printing of clay-based mixtures with sufficient flowability, buildability, strength, and open time (i.e., the time period between printing of one layer and printing of another layer deposited on a layer below). The paper describes typical clay-based mixtures and their traditional process and then specifies the challenges in going from traditional cob construction to advanced computer-controlled robotic 3D printing.


1995 ◽  
Vol 38 (5) ◽  
pp. 1126-1142 ◽  
Author(s):  
Jeffrey W. Gilger

This paper is an introduction to behavioral genetics for researchers and practioners in language development and disorders. The specific aims are to illustrate some essential concepts and to show how behavioral genetic research can be applied to the language sciences. Past genetic research on language-related traits has tended to focus on simple etiology (i.e., the heritability or familiality of language skills). The current state of the art, however, suggests that great promise lies in addressing more complex questions through behavioral genetic paradigms. In terms of future goals it is suggested that: (a) more behavioral genetic work of all types should be done—including replications and expansions of preliminary studies already in print; (b) work should focus on fine-grained, theory-based phenotypes with research designs that can address complex questions in language development; and (c) work in this area should utilize a variety of samples and methods (e.g., twin and family samples, heritability and segregation analyses, linkage and association tests, etc.).


1976 ◽  
Vol 21 (7) ◽  
pp. 497-498
Author(s):  
STANLEY GRAND

2020 ◽  
Vol 71 (7) ◽  
pp. 775-788
Author(s):  
Quyet Truong Van ◽  
Sang Nguyen Thanh

The utilisation of supplementary cementitious materials (SCMs) is widespread in the concrete industry because of the performance benefits and economic. Ground granulated blast furnace slag (GGBFS) and fly ash (FA) have been used as the SCMs in concrete for reducing the weight of cement and improving durability properties. In this study, GGBFS at different cement replacement ratios of 0%, 20%, 40% and 60% by weight were used in fine-grained concrete. The ternary binders containing GGBFS and FA at cement replacement ratio of 60% by weight have also evaluated. Flexural and compressive strength test, rapid chloride permeability test and under-water abrasion test were performed. Experimental results show that the increase in concrete strength with GGBFS contents from 20% to 40% but at a higher period of maturity (56 days and more). The chloride permeability the under-water abrasion reduced with the increasing cement replacement by GGBFS or a combination of GGBFS and FA


Sign in / Sign up

Export Citation Format

Share Document