scholarly journals Hypothalamic alterations in fetuses of high fat diet-fed obese female rats

2008 ◽  
Vol 200 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Anshu Gupta ◽  
Malathi Srinivasan ◽  
Supaporn Thamadilok ◽  
Mulchand S Patel

The offspring of high fat (HF) diet-fed rats display increased body weight during adulthood. However, it is not known whether the changes in appetite regulation in these animals occur in utero or postnatally. We investigated the effects of maternal obesity induced by a HF diet prior to and during pregnancy on leptin and insulin signaling and the expression of orexigenic and anorexigenic peptides in term fetal hypothalami. The consumption of a HF diet prior to and during pregnancy resulted in obesity in HF female rats; additionally, HF female rats exhibited hyperinsulinemia and hyperleptinemia which were exaggerated in late gestation compared with control female rats that were fed a standard rodent laboratory chow (LC). Term fetuses of HF female rats (FHF) also had significantly higher serum leptin and insulin levels compared with control fetuses (FLC) while there was no difference in average fetal weight between the two groups. FHF hypothalami showed elevated levels of mRNA and proteins for leptin long receptor and insulin receptor β-subunit. However, the protein levels of signal transducers and activators of transcription-3 and insulin receptor substrate-2, the downstream signaling components of leptin and insulin signaling respectively were decreased. Also, FHF hypothalami had increased mRNA levels of neuropeptide Y and agouti-related polypeptide indicating that orexigenic neuropeptides in HF progeny are already upregulated by term fetal stage. Additionally, the mRNA levels of pro-opiatemelanocortin and melanocortin receptor-4 were also increased in the HF fetal hypothalami. These findings indicate potential programming effects of an altered intrauterine environment induced by HF diet consumption on appetite-regulating neuropeptides and leptin and insulin signaling in the late fetal period.

2018 ◽  
Vol 9 (4) ◽  
pp. 401-408 ◽  
Author(s):  
E. Bytautiene Prewit ◽  
C. Porter ◽  
M. La Rosa ◽  
N. Bhattarai ◽  
H. Yin ◽  
...  

AbstractWith brown adipose tissue (BAT) becoming a possible therapeutic target to counteract obesity, the prenatal environment could represent a critical window to modify BAT function and browning of white AT. We investigated if levels of uncoupling protein 1 (UCP1) and UCP1-mediated thermogenesis are altered in offspring exposed to prenatal obesity. Female CD-1 mice were fed a high-fat (HF) or standard-fat (SF) diet for 3 months before breeding. After weaning, all pups were placed on SF. UCP1 mRNA and protein levels were quantified using quantitative real-time PCR and Western blot analysis, respectively, in brown (BAT), subcutaneous (SAT) and visceral (VAT) adipose tissues at 6 months of age. Total and UCP1-dependent mitochondrial respiration were determined by high-resolution respirometry. A Student’st-test and Mann–Whitney test were used (significance:P<0.05). UCP1 mRNA levels were not different between the HF and SF offspring. UCP1 protein levels, total mitochondrial respiration and UCP1-dependent respiration were significantly higher in BAT from HF males (P=0.02,P=0.04,P=0.005, respectively) and females (P=0.01,P=0.04,P=0.02, respectively). In SAT, the UCP1 protein was significantly lower in HF females (P=0.03), and the UCP1-dependent thermogenesis was significantly lower from HF males (P=0.04). In VAT, UCP1 protein levels and UCP1-dependent respiration were significantly lower only in HF females (P=0.03,P=0.04, respectively). There were no differences in total respiration in SAT and VAT. Prenatal exposure to maternal obesity leads to significant increases in UCP1 levels and function in BAT in offspring with little impact on UCP1 levels and function in SAT and VAT.


2006 ◽  
Vol 290 (6) ◽  
pp. E1262-E1266 ◽  
Author(s):  
Fresnida J. Ramos ◽  
Paul R. Langlais ◽  
Derong Hu ◽  
Lily Q. Dong ◽  
Feng Liu

Growth factor receptor-bound protein 10 (Grb10) is an adapter protein that interacts with a number of tyrosine-phosphorylated growth factor receptors, including the insulin receptor (IR). To investigate the role of Grb10 in insulin signaling, we generated cell lines in which the expression levels of Grb10 are either overexpressed by stable transfection or suppressed by RNA interference. We found that suppressing endogenous Grb10 expression led to increased IR protein levels, whereas overexpression of Grb10 led to reduced IR protein levels. Altering Grb10 expression levels had no effect on the mRNA levels of IR, suggesting that the modulation occurs at the protein level. Reduced IR levels were also observed in cells with prolonged insulin treatment, and this reduction was inhibited in Grb10-deficient cells. The insulin-induced IR reduction was greatly reversed by MG-132, a proteasomal inhibitor, but not by chloroquine, a lysosomal inhibitor. IR underwent insulin-stimulated ubiquitination in cells, and this ubiquitination was inhibited in the Grb10-suppressed cell line. Together, our results suggest that, in addition to inhibiting IR kinase activity by directly binding to the IR, Grb10 also negatively regulates insulin signaling by mediating insulin-stimulated degradation of the receptor.


Diabetologia ◽  
2021 ◽  
Author(s):  
Juliana de Almeida-Faria ◽  
Daniella E. Duque-Guimarães ◽  
Thomas P. Ong ◽  
Lucas C. Pantaleão ◽  
Asha A. Carpenter ◽  
...  

Abstract Aims/hypothesis Levels of the microRNA (miRNA) miR-126-3p are programmed cell-autonomously in visceral adipose tissue of adult offspring born to obese female C57BL/6J mice. The spectrum of miR-126-3p targets and thus the consequences of its dysregulation for adipocyte metabolism are unknown. Therefore, the aim of the current study was to identify novel targets of miR-126-3p in vitro and then establish the outcomes of their dysregulation on adipocyte metabolism in vivo using a well-established maternal obesity mouse model. Methods miR-126-3p overexpression in 3T3-L1 pre-adipocytes followed by pulsed stable isotope labelling by amino acids in culture (pSILAC) was performed to identify novel targets of the miRNA. Well-established bioinformatics algorithms and luciferase assays were then employed to confirm those that were direct targets of miR-126-3p. Selected knockdown experiments were performed in vitro to define the consequences of target dysregulation. Quantitative real-time PCR, immunoblotting, histology, euglycaemic–hyperinsulinaemic clamps and glucose tolerance tests were performed to determine the phenotypic and functional outcomes of maternal programmed miR-126-3p levels in offspring adipose tissue. Results The proteomic approach confirmed the identity of known targets of miR-126-3p (including IRS-1) and identified Lunapark, an endoplasmic reticulum (ER) protein, as a novel one. We confirmed by luciferase assay that Lunapark was a direct target of miR-126-3p. Overexpression of miR-126-3p in vitro led to a reduction in Lunapark protein levels and increased Perk (also known as Eif2ak3) mRNA levels and small interference-RNA mediated knockdown of Lunapark led to increased Xbp1, spliced Xbp1, Chop (also known as Ddit3) and Perk mRNA levels and an ER stress transcriptional response in 3T3-L1 pre-adipocytes. Consistent with the results found in vitro, increased miR-126-3p expression in adipose tissue from adult mouse offspring born to obese dams was accompanied by decreased Lunapark and IRS-1 protein levels and increased markers of ER stress. At the whole-body level the animals displayed glucose intolerance. Conclusions/interpretation Concurrently targeting IRS-1 and Lunapark, a nutritionally programmed increase in miR-126-3p causes adipose tissue insulin resistance and an ER stress response, both of which may contribute to impaired glucose tolerance. These findings provide a novel mechanism by which obesity during pregnancy leads to increased risk of type 2 diabetes in the offspring and therefore identify miR-126-3p as a potential therapeutic target. Graphical abstract


2017 ◽  
Vol 59 (1) ◽  
pp. 81-92 ◽  
Author(s):  
Long The Nguyen ◽  
Sonia Saad ◽  
Yi Tan ◽  
Carol Pollock ◽  
Hui Chen

Maternal obesity has been shown to increase the risk of obesity and related disorders in the offspring, which has been partially attributed to changes of appetite regulators in the offspring hypothalamus. On the other hand, endoplasmic reticulum (ER) stress and autophagy have been implicated in hypothalamic neuropeptide dysregulation, thus may also play important roles in such transgenerational effect. In this study, we show that offspring born to high-fat diet-fed dams showed significantly increased body weight and glucose intolerance, adiposity and plasma triglyceride level at weaning. Hypothalamic mRNA level of the orexigenic neuropeptide Y (NPY) was increased, while the levels of the anorexigenic pro-opiomelanocortin (POMC), NPY1 receptor (NPY1R) and melanocortin-4 receptor (MC4R) were significantly downregulated. In association, the expression of unfolded protein response (UPR) markers including glucose-regulated protein (GRP)94 and endoplasmic reticulum DNA J domain-containing protein (Erdj)4 was reduced. By contrast, protein levels of autophagy-related genes Atg5 and Atg7, as well as mitophagy marker Parkin, were slightly increased. The administration of 4-phenyl butyrate (PBA), a chemical chaperone of protein folding and UPR activator, in the offspring from postnatal day 4 significantly reduced their body weight, fat deposition, which were in association with increased activating transcription factor (ATF)4, immunoglobulin-binding protein (BiP) and Erdj4 mRNA as well as reduced Parkin, PTEN-induced putative kinase (PINK)1 and dynamin-related protein (Drp)1 protein expression levels. These results suggest that hypothalamic ER stress and mitophagy are among the regulatory factors of offspring metabolic changes due to maternal obesity.


Endocrinology ◽  
2010 ◽  
Vol 151 (1) ◽  
pp. 75-84 ◽  
Author(s):  
Christopher M. Mayer ◽  
Denise D. Belsham

Abstract Central insulin signaling is critical for the prevention of insulin resistance. Hyperinsulinemia contributes to insulin resistance, but it is not yet clear whether neurons are subject to cellular insulin resistance. We used an immortalized, hypothalamic, clonal cell line, mHypoE-46, which exemplifies neuronal function and expresses the components of the insulin signaling pathway, to determine how hyperinsulinemia modifies neuronal function. Western blot analysis indicated that prolonged insulin treatment of mHypoE-46 cells attenuated insulin signaling through phospho-Akt. To understand the mechanisms involved, time-course analysis was performed. Insulin exposure for 4 and 8 h phosphorylated Akt and p70-S6 kinase (S6K1), whereas 8 and 24 h treatment decreased insulin receptor (IR) and IR substrate 1 (IRS-1) protein levels. Insulin phosphorylation of S6K1 correlated with IRS-1 ser1101 phosphorylation and the mTOR-S6K1 pathway inhibitor rapamycin prevented IRS-1 serine phosphorylation. The proteasomal inhibitor epoxomicin and the lysosomal pathway inhibitor 3-methyladenine prevented the degradation of IRS-1 and IR by insulin, respectively, and pretreatment with rapamycin, epoxomicin, or 3-methyladenine prevented attenuation of insulin signaling by long-term insulin exposure. Thus, a sustained elevation of insulin levels diminishes neuronal insulin signaling through mTOR-S6K1-mediated IRS-1 serine phosphorylation, proteasomal degradation of IRS-1 and lysosomal degradation of the IR.


2013 ◽  
Vol 110 (3) ◽  
pp. 447-455 ◽  
Author(s):  
Nathalia R. V. Dragano ◽  
Anne y Castro Marques ◽  
Dennys E. C. Cintra ◽  
Carina Solon ◽  
Joseane Morari ◽  
...  

The peel of the native Brazilian fruit jaboticaba is rich in anthocyanins, which are known for their anti-obesity effects in animal models. The aim of the present study was to evaluate the effects of freeze-dried jaboticaba peel powder (FDJPP) on a number of metabolic parameters in a model of diet-induced obesity. Mice (n 8 per group) were initially fed on a high-fat diet (HFD, 35 % w/w) for 4 weeks and then switched to a HFD supplemented with FDJPP (1, 2 or 4 % w/w) for an additional 6 weeks. Energy intake, weight loss, glucose tolerance, insulin resistance and lipid profile were determined, and the results were evaluated using ANOVA and Tukey's tests. The FDJPP exerted no protective effect on HFD-induced weight gain, hyperleptinaemia and glucose intolerance. However, the supplementation was effective to reduce insulin resistance, as evidenced in the insulin tolerance test, and subsequently confirmed by improved signal transduction through the insulin receptor/insulin receptor substrate-1/Akt/forkhead box protein pathway and by the attenuation of HFD-induced inflammation in the liver, verified by lower expressions of IL-1β and IL-6 and decreased phosphorylated IκB-α protein levels in all jaboticaba-treated mice. These results suggest that FDJPP may exert a protective role against obesity-associated insulin resistance.


2008 ◽  
Vol 197 (3) ◽  
pp. 565-574 ◽  
Author(s):  
Malathi Srinivasan ◽  
Paul Mitrani ◽  
Gigani Sadhanandan ◽  
Catherine Dodds ◽  
Suhad Shbeir-ElDika ◽  
...  

Newborn rat pups artificially raised on a high-carbohydrate (HC) milk formula are chronically hyperinsulinemic and develop adult-onset obesity. As HC rats display aberrations in body weight regulation, hypothalamic adaptations predisposing to obesity have been investigated in this study. The artificial rearing of neonatal rat pups on the HC milk formula resulted in significant increases in the mRNA levels of neuropeptide Y, agouti-related polypeptide, and galanin in the hypothalamus of 12-day-old HC rats. Simultaneously, decreases in the mRNA levels of POMC, melanocortin receptor-4, cocaine- and amphetamine-regulated transcript, and corticotrophin-releasing factor were observed in the hypothalamus of these rats. These changes persisted in 100-day-old HC rats despite weaning onto a rodent diet on postnatal day 24. Marked hyperphagia and increased body weight gain were observed in the post-weaning period. The mRNA levels and protein content of insulin receptor β (IR-β) and leptin receptor (long form) showed significant decreases in the hypothalamus of both 12- and 100-day-old HC rats. Further investigation of insulin signaling in the hypothalamus of HC rats indicated significant decreases in the proximal signaling components (insulin receptor substrate proteins 1 and 2 and phosphotidylinositol 3-kinase) in 100-day-old HC rats. These results suggest that hypothalamic neuropeptides respond to the increased carbohydrate availability with associated hormonal alterations during the period of dietary modulation and that these adaptations by persisting in the post-weaning period predispose the HC rats for adult-onset obesity.


2005 ◽  
Vol 186 (1) ◽  
pp. 145-155 ◽  
Author(s):  
S Shaikh ◽  
F H Bloomfield ◽  
M K Bauer ◽  
H H Phua ◽  
R S Gilmour ◽  
...  

We have previously reported that chronic intra-amniotic supplementation of the late gestation growth-restricted (IUGR) ovine fetus with IGF-I (20 μg/day) increased gut growth but reduced liver weight and circulating IGF-I concentrations. Here we report mRNA and protein levels of IGF-I, the type 1 IGF receptor (IGF-1R) and IGF-binding proteins (IGFBP)-1, -2 and -3 in fetal gut, liver, muscle and placenta from fetuses in that earlier study in an attempt to explain these contrasting results. mRNA and protein were extracted from tissues obtained at post mortem at 131 days of gestation (term, 145 days) from three groups of fetuses (control, IUGR+saline and IUGR+IGF-I, n=9 per group). Control fetuses were unembolised and untreated. In the IUGR groups, growth restriction was induced from 113 to 120 days by placental embolisation; from 120 to 130 days fetuses were treated with daily intra-amniotic injections of either saline or 20 μg IGF-I. mRNA was measured by RT-PCR or real-time RT-PCR, and protein by Western blot. In liver, muscle and placenta, IGF-I mRNA and protein levels were reduced by between 8 and 30% in IGF-I-treated fetuses compared with saline-treated fetuses and controls with no change in IGF-1R mRNA or protein levels. In contrast, in the gut, IGF-I mRNA and protein levels were not significantly altered with IGF-I treatment, but IGF-1R levels were increased, especially in the jejunum. Immunolocalisation demonstrated that IGF-1R expression was confined to the luminal aspect of the gut. mRNA levels of all three IGFBPs were reduced in the gut of IGF-I-treated fetuses, but hepatic expression was significantly increased. These data demonstrated tissue-specific regulation of IGF-I, IGF-1R and IGFBPs-1, -2 and -3 in response to intra-amniotic IGF-I supplementation, though the underlying mechanisms remain obscure.


Endocrinology ◽  
2005 ◽  
Vol 146 (12) ◽  
pp. 5596-5603 ◽  
Author(s):  
Georgia Frangioudakis ◽  
Ji-Ming Ye ◽  
Gregory J. Cooney

Our aim was to determine the importance of changes in phosphorylation of key insulin signaling intermediates in the insulin resistance observed in skeletal muscle of rats fed diets high in saturated or n-6 polyunsaturated fat. We used phospho-specific antibodies to measure the time course of phosphorylation of key components of the insulin signaling pathway by immunoblotting during the initial stages of a physiological elevation in the circulating insulin concentration. The phosphorylation of insulin receptor at Tyr1162/1163 (IR Tyr1162/1163) increased over 20 min of insulin infusion, whereas the downstream phosphorylation of insulin receptor substrate-1 Tyr612 (IRS-1 Tyr612) peaked at 5 min and declined thereafter. Interestingly, phosphorylation of IRS-1 at Tyr895 continued to increase over the 20-min period, and protein kinase B (PKB) phosphorylation at Ser473 reached a plateau by 5 min, demonstrating that different profiles of phosphorylation are involved in transmission of the insulin signal despite a constant level of insulin stimulation. In muscle from rats fed high n-6 polyunsaturated or saturated fat diets, however, there was no insulin-stimulated increase in IRS-1 Tyr612 phosphorylation and a temporal difference in PKB Ser473 phosphorylation despite no difference in IR Tyr1162/1163 phosphorylation, IRS-1 Tyr895 phosphorylation, and ERK phosphorylation. These results demonstrate that under conditions of increased insulin, similar to those used to assess insulin action in vivo, chronic high-fat feeding impairs insulin signal transduction related to glucose metabolism at the level of IRS-1 Tyr612 and PKB Ser473 and that these effects are independent of the type of fat used in the high-fat diet.


2022 ◽  
Vol 12 ◽  
Author(s):  
Annelene Govindsamy ◽  
Samira Ghoor ◽  
Marlon E. Cerf

Fetal programming refers to an intrauterine stimulus or insult that shapes growth, development and health outcomes. Dependent on the quality and quantity, dietary fats can be beneficial or detrimental for the growth of the fetus and can alter insulin signaling by regulating the expression of key factors. The effects of varying dietary fat content on the expression profiles of factors in the neonatal female and male rat heart were investigated and analyzed in control (10% fat), 20F (20% fat), 30F (30% fat) and 40F (40% fat which was a high fat diet used to induce high fat programming) neonatal rats. The whole neonatal heart was immunostained for insulin receptor, glucose transporter 4 (Glut4) and forkhead box protein 1 (FoxO1), followed by image analysis. The expression of 84 genes, commonly associated with the insulin signaling pathway, were then examined in 40F female and 40F male offspring. Maintenance on diets, varying in fat content during fetal life, altered the expression of cardiac factors, with changes induced from 20% fat in female neonates, but from 30% fat in male neonates. Further, CCAAT/enhancer-binding protein alpha (Cebpa) was upregulated in 40F female neonates. There was, however, differential expression of several insulin signaling genes in 40F (high fat programmed) offspring, with some tending to significance but most differences were in fold changes (≥1.5 fold). The increased immunoreactivity for insulin receptor, Glut4 and FoxO1 in 20F female and 30F male neonatal rats may reflect a compensatory response to programming to maintain cardiac physiology. Cebpa was upregulated in female offspring maintained on a high fat diet, with fold increases in other insulin signaling genes viz. Aebp1, Cfd (adipsin), Adra1d, Prkcg, Igfbp, Retn (resistin) and Ucp1. In female offspring maintained on a high fat diet, increased Cebpa gene expression (concomitant with fold increases in other insulin signaling genes) may reflect cardiac stress and an adaptative response to cardiac inflammation, stress and/or injury, after high fat programming. Diet and the sex are determinants of cardiac physiology and pathophysiology, reflecting divergent mechanisms that are sex-specific.


Sign in / Sign up

Export Citation Format

Share Document