scholarly journals Maternal obesity during pregnancy leads to adipose tissue ER stress in mice via miR-126-mediated reduction in Lunapark

Diabetologia ◽  
2021 ◽  
Author(s):  
Juliana de Almeida-Faria ◽  
Daniella E. Duque-Guimarães ◽  
Thomas P. Ong ◽  
Lucas C. Pantaleão ◽  
Asha A. Carpenter ◽  
...  

Abstract Aims/hypothesis Levels of the microRNA (miRNA) miR-126-3p are programmed cell-autonomously in visceral adipose tissue of adult offspring born to obese female C57BL/6J mice. The spectrum of miR-126-3p targets and thus the consequences of its dysregulation for adipocyte metabolism are unknown. Therefore, the aim of the current study was to identify novel targets of miR-126-3p in vitro and then establish the outcomes of their dysregulation on adipocyte metabolism in vivo using a well-established maternal obesity mouse model. Methods miR-126-3p overexpression in 3T3-L1 pre-adipocytes followed by pulsed stable isotope labelling by amino acids in culture (pSILAC) was performed to identify novel targets of the miRNA. Well-established bioinformatics algorithms and luciferase assays were then employed to confirm those that were direct targets of miR-126-3p. Selected knockdown experiments were performed in vitro to define the consequences of target dysregulation. Quantitative real-time PCR, immunoblotting, histology, euglycaemic–hyperinsulinaemic clamps and glucose tolerance tests were performed to determine the phenotypic and functional outcomes of maternal programmed miR-126-3p levels in offspring adipose tissue. Results The proteomic approach confirmed the identity of known targets of miR-126-3p (including IRS-1) and identified Lunapark, an endoplasmic reticulum (ER) protein, as a novel one. We confirmed by luciferase assay that Lunapark was a direct target of miR-126-3p. Overexpression of miR-126-3p in vitro led to a reduction in Lunapark protein levels and increased Perk (also known as Eif2ak3) mRNA levels and small interference-RNA mediated knockdown of Lunapark led to increased Xbp1, spliced Xbp1, Chop (also known as Ddit3) and Perk mRNA levels and an ER stress transcriptional response in 3T3-L1 pre-adipocytes. Consistent with the results found in vitro, increased miR-126-3p expression in adipose tissue from adult mouse offspring born to obese dams was accompanied by decreased Lunapark and IRS-1 protein levels and increased markers of ER stress. At the whole-body level the animals displayed glucose intolerance. Conclusions/interpretation Concurrently targeting IRS-1 and Lunapark, a nutritionally programmed increase in miR-126-3p causes adipose tissue insulin resistance and an ER stress response, both of which may contribute to impaired glucose tolerance. These findings provide a novel mechanism by which obesity during pregnancy leads to increased risk of type 2 diabetes in the offspring and therefore identify miR-126-3p as a potential therapeutic target. Graphical abstract

2010 ◽  
Vol 298 (3) ◽  
pp. E548-E554 ◽  
Author(s):  
Rickard Westergren ◽  
Daniel Nilsson ◽  
Mikael Heglind ◽  
Zahra Arani ◽  
Mats Grände ◽  
...  

Many members of the forkhead genes family of transcription factors have been implicated as important regulators of metabolism, in particular, glucose homeostasis, e.g., Foxo1, Foxa3, and Foxc2. The purpose of this study was to exploit the possibility that yet unknown members of this gene family play a role in regulating glucose tolerance in adipocytes. We identified Foxf2 in a screen for adipose-expressed forkhead genes. In vivo overexpression of Foxf2 in an adipose tissue-restricted fashion demonstrated that such mice display a significantly induced insulin secretion in response to an intravenous glucose load compared with wild-type littermates. In response to increased Foxf2 expression, insulin receptor substrate 1 (IRS1) mRNA and protein levels are significantly downregulated in adipocytes; however, the ratio of serine vs. tyrosine phosphorylation of IRS1 seems to remain unaffected. Furthermore, adipocytes overexpressing Foxf2 have a significantly lower insulin-mediated glucose uptake compared with wild-type adipocytes. These findings argue that Foxf2 is a previously unrecognized regulator of cellular and systemic whole body glucose tolerance, at least in part, due to lower levels of IRS1. Foxf2 and its downstream target genes can provide new insights with regard to identification of novel therapeutic targets.


2021 ◽  
Author(s):  
Vittoria D'Esposito ◽  
Maria Rosaria Ambrosio ◽  
Domenico Liguoro ◽  
Giuseppe Perruolo ◽  
Manuela Lecce ◽  
...  

Abstract Background Excessive adiposity provides an inflammatory environment. However, in people with severe obesity, how systemic and local adipose tissue (AT)-derived cytokines contribute to worsening glucose tolerance is not clear. Methods 92 severely obese (SO) individuals undergoing bariatric surgery were enrolled and subjected to detailed clinical phenotyping. Following an Oral Glucose Tolerance Test, participants were included in three groups, based on the presence of normal glucose tolerance (NGT), impaired glucose tolerance (IGT) or Type 2 Diabetes (T2D). Serum and subcutaneous AT (SAT) biopsies were obtained and Mesenchymal Stem Cells (MSCs) were isolated, characterized and differentiated in adipocytes in vitro. TNFA and PPARG mRNA levels were determined by qRT-PCR. Circulating, adipocyte- and MSC-released cytokines, chemokines and growth factors were assessed by multiplex ELISA. Results Serum levels of IL-9, IL-13 and MIP-1β were increased in SO individuals with T2D, as compared with those with either IGT or NGT. At variance, SAT samples obtained from SO individuals with IGT displayed levels of TNFA which were 3-fold higher compared to those with NGT, but not different from those with T2D. Elevated levels of TNFα were also found in differentiated adipocytes, isolated from the SAT specimens of individuals with IGT and T2D, compared to those with NGT. Consistent with the pro-inflammatory milieu, IL-1β and IP-10 secretion was significantly higher in adipocytes from individuals with IGT and T2D. Moreover, increased levels of TNFα, both mRNA and secreted protein, were detected in MSCs obtained from IGT and T2D, compared to NGT SO individuals. Exposure of T2D and IGT–derived MSCs to quercetin reduced TNFα levels and was paralleled by a significant decrease of the secretion of inflammatory cytokines. Conclusion In severe obesity, enhanced SAT-derived inflammatory phenotype is an early step in the progression toward T2D and may be, at least in part, attenuated by quercetin.


2018 ◽  
Vol 9 (4) ◽  
pp. 401-408 ◽  
Author(s):  
E. Bytautiene Prewit ◽  
C. Porter ◽  
M. La Rosa ◽  
N. Bhattarai ◽  
H. Yin ◽  
...  

AbstractWith brown adipose tissue (BAT) becoming a possible therapeutic target to counteract obesity, the prenatal environment could represent a critical window to modify BAT function and browning of white AT. We investigated if levels of uncoupling protein 1 (UCP1) and UCP1-mediated thermogenesis are altered in offspring exposed to prenatal obesity. Female CD-1 mice were fed a high-fat (HF) or standard-fat (SF) diet for 3 months before breeding. After weaning, all pups were placed on SF. UCP1 mRNA and protein levels were quantified using quantitative real-time PCR and Western blot analysis, respectively, in brown (BAT), subcutaneous (SAT) and visceral (VAT) adipose tissues at 6 months of age. Total and UCP1-dependent mitochondrial respiration were determined by high-resolution respirometry. A Student’st-test and Mann–Whitney test were used (significance:P<0.05). UCP1 mRNA levels were not different between the HF and SF offspring. UCP1 protein levels, total mitochondrial respiration and UCP1-dependent respiration were significantly higher in BAT from HF males (P=0.02,P=0.04,P=0.005, respectively) and females (P=0.01,P=0.04,P=0.02, respectively). In SAT, the UCP1 protein was significantly lower in HF females (P=0.03), and the UCP1-dependent thermogenesis was significantly lower from HF males (P=0.04). In VAT, UCP1 protein levels and UCP1-dependent respiration were significantly lower only in HF females (P=0.03,P=0.04, respectively). There were no differences in total respiration in SAT and VAT. Prenatal exposure to maternal obesity leads to significant increases in UCP1 levels and function in BAT in offspring with little impact on UCP1 levels and function in SAT and VAT.


Author(s):  
Einav Hubel ◽  
Sigal Fishman ◽  
Minna Holopainen ◽  
Reijo Käkelä ◽  
Ortal Schaffer ◽  
...  

Drug-induced liver injury is an emerging form of acute and chronic liver disease that may manifest as fatty liver. Amiodarone (AMD), a widely used anti-arrhythmic drug, can cause hepatic injury and steatosis by a variety of mechanisms, not all completely understood. We hypothesized that repetitive AMD administration may induce hepatic lipotoxicity not only via effects on the liver, but also via effects on adipose tissue. Indeed, repetitive AMD administration induced endoplasmic reticulum (ER) stress in both liver and adipose tissue. In adipose tissue, AMD reduced lipogenesis and increased lipolysis. Moreover, AMD treatment induced ER stress and ER stress-dependent lipolysis in 3T3L1 adipocytes in vitro. In the liver, AMD caused increased expression of genes encoding proteins involved in fatty acid (FA) uptake and transfer (Cd36, Fabp1 and Fabp4) and resulted in increased hepatic accumulation of free FAs, but not of triacylglycerols. In line with this, there was increased expression of hepatic de novo FA synthesis genes. However, AMD significantly reduced the expression of the desaturase Scd1 and elongase Elovl6, detected at mRNA and protein levels. Accordingly, the FA profile of hepatic total lipids revealed increased accumulation of palmitate, a SCD1 and ELOVL6 substrate, and reduced levels of palmitoleate and cis-vaccenate, products of the enzymes. In addition, AMD-treated mice displayed increased hepatic apoptosis. The studies show that repetitive AMD induces ER stress and aggravates lipolysis in adipose tissue, while inducing a lipotoxic hepatic lipid environment, suggesting that AMD-induced liver damage is due to compound insult to liver and adipose tissue.


Diabetologia ◽  
2021 ◽  
Author(s):  
Karin M. Kirschner ◽  
Anna Foryst-Ludwig ◽  
Sabrina Gohlke ◽  
Chen Li ◽  
Roberto E. Flores ◽  
...  

Abstract Aims/hypothesis Despite a similar fat storing function, visceral (intra-abdominal) white adipose tissue (WAT) is detrimental, whereas subcutaneous WAT is considered to protect against metabolic disease. Recent findings indicate that thermogenic genes, expressed in brown adipose tissue (BAT), can be induced primarily in subcutaneous WAT. Here, we investigate the hypothesis that the Wilms tumour gene product (WT1), which is expressed in intra-abdominal WAT but not in subcutaneous WAT and BAT, suppresses a thermogenic program in white fat cells. Methods Heterozygous Wt1 knockout mice and their wild-type littermates were examined in terms of thermogenic and adipocyte-selective gene expression. Glucose tolerance and hepatic lipid accumulation in these mice were assessed under normal chow and high-fat diet conditions. Pre-adipocytes isolated from the stromal vascular fraction of BAT were transduced with Wt1-expressing retrovirus, induced to differentiate and analysed for the expression of thermogenic and adipocyte-selective genes. Results Expression of the thermogenic genes Cpt1b and Tmem26 was enhanced and transcript levels of Ucp1 were on average more than tenfold higher in epididymal WAT of heterozygous Wt1 knockout mice compared with wild-type mice. Wt1 heterozygosity reduced epididymal WAT mass, improved whole-body glucose tolerance and alleviated severe hepatic steatosis upon diet-induced obesity in mice. Retroviral expression of WT1 in brown pre-adipocytes, which lack endogenous WT1, reduced mRNA levels of Ucp1, Ppargc1a, Cidea, Prdm16 and Cpt1b upon in vitro differentiation by 60–90%. WT1 knockdown in epididymal pre-adipocytes significantly lowered Aldh1a1 and Zfp423 transcripts, two key suppressors of the thermogenic program. Conversely, Aldh1a1 and Zfp423 mRNA levels were increased approximately five- and threefold, respectively, by retroviral expression of WT1 in brown pre-adipocytes. Conclusion/interpretation WT1 functions as a white adipocyte determination factor in epididymal WAT by suppressing thermogenic genes. Reducing Wt1 expression in this and other intra-abdominal fat depots may represent a novel treatment strategy in metabolic disease. Graphical abstract


2017 ◽  
Author(s):  
◽  
Omonseigho Owomare Talton

Gestational diabetes mellitus (GDM) is the most common pregnancy disorder. GDM pregnancies result in offspring that are more likely to develop metabolic syndrome in adolescence than the background population. As offspring experience these adverse effects during their reproductive years, GDM has the potential to propagate disease for many generations. Hyperleptinemia, a key characteristic of both GDM and maternal obesity has not been studied in isolation to determine its role in programming offspring outcomes. Hyperglycemia in the absence of obesity has also not been widely modeled without surgical or chemical means. My research goal was to study the offspring outcomes of these two facets of GDM in C57B6 mice. We observed that maternal hyperleptinemia improved offspring insulin sensitivity, and protected the offspring from developing glucose intolerance. These outcomes were partly mediated by reduced fatty acid accumulation in the liver. Our findings suggest that maternal hyperleptinemia is protective of offspring glucose control. Maternal hyperglycemia in lean dams increased offspring adiposity while glucose tolerance was unchanged. This effect was mediated by a preference for glucose over lipids for substrate utilization, and multiple gene expression changes in the male adipose tissue and liver. Our results indicate that lean maternal hyperglycemia results in metabolically healthy obesity in offspring. This work demonstrates that GDM in lean women may not negatively affect glucose tolerance, and that maternal hyperleptinemia may mediate this, through improving insulin sensitivity. It supports other data that suggest that the liver and adipose tissue are key regulators of whole body metabolism.


2015 ◽  
Vol 308 (7) ◽  
pp. E554-E561 ◽  
Author(s):  
José María Moreno-Navarrete ◽  
María Moreno ◽  
Marta Vidal ◽  
Francisco Ortega ◽  
Marta Serrano ◽  
...  

Genetic deletion of Dbc1 in mice reduced adipose tissue senescence and inflammation while promoting an expansion of this tissue. Here, we aimed to investigate DBC1 mRNA and protein levels in human adipose tissue from subjects with a wide spectrum of fat mass ( cohort 1; n = 105) and insulin resistance ( cohort 2; n = 47); we also investigated the effects of DBC1 knockdown on 3T3-L1 adipocyte differentiation. DBC1 mRNA was relatively abundant in both visceral (VAT) and subcutaneous adipose tissue (SAT) (mainly in the adipocyte fraction), being decreased in adipose tissue from obese compared with lean subjects. In both VAT and SAT, DBC1 mRNA levels were negatively associated with BMI and positively associated with age and the expression of PPARγ, GLUT4, IRS1, lipogenic ( FASN, ACACA), lipid droplet-associated genes ( PLIN1, FSP27, ADRP, and TIP47), and lipolytic ( ABDH5, AKAP, and PRKACA) genes but negatively associated with ADIPOQ in VAT. DBC1 mRNA and protein levels were increased in the early stages of adipocyte differentiation of human and 3T3-L1 adipocytes. Dbc1 knockdown (KD) with lentivirus led to enhanced adipocyte differentiation, increasing intracellular lipid accumulation and adipogenic gene expression. In conclusion, although DBC1 gene expression was reduced in adipose tissue from obese subjects, it was negatively associated with ADIPOQ gene expression in VAT, suggesting that DBC1 might promote visceral adipose tissue dysfunction. In vitro data supported the antiadipogenic effects of DBC1.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chengwu Xiao ◽  
Wei Zhang ◽  
Meimian Hua ◽  
Huan Chen ◽  
Bin Yang ◽  
...  

Abstract Background The tripartite motif (TRIM) family proteins exhibit oncogenic roles in various cancers. The roles of TRIM27, a member of the TRIM super family, in renal cell carcinoma (RCC) remained unexplored. In the current study, we aimed to investigate the clinical impact and roles of TRIM27 in the development of RCC. Methods The mRNA levels of TRIM27 and Kaplan–Meier survival of RCC were analyzed from The Cancer Genome Atlas database. Real-time PCR and Western blotting were used to measure the mRNA and protein levels of TRIM27 both in vivo and in vitro. siRNA and TRIM27 were exogenously overexpressed in RCC cell lines to manipulate TRIM27 expression. Results We discovered that TRIM27 was elevated in RCC patients, and the expression of TRIM27 was closely correlated with poor prognosis. The loss of function and gain of function results illustrated that TRIM27 promotes cell proliferation and inhibits apoptosis in RCC cell lines. Furthermore, TRIM27 expression was positively associated with NF-κB expression in patients with RCC. Blocking the activity of NF-κB attenuated the TRIM27-mediated enhancement of proliferation and inhibition of apoptosis. TRIM27 directly interacted with Iκbα, an inhibitor of NF-κB, to promote its ubiquitination, and the inhibitory effects of TRIM27 on Iκbα led to NF-κB activation. Conclusions Our results suggest that TRIM27 exhibits an oncogenic role in RCC by regulating NF-κB signaling. TRIM27 serves as a specific prognostic indicator for RCC, and strategies targeting the suppression of TRIM27 function may shed light on future therapeutic approaches.


Pathobiology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Ying Xie ◽  
Yuanyuan Ruan ◽  
Huimei Zou ◽  
Yixin Wang ◽  
Xin Wu ◽  
...  

<b><i>Objective:</i></b> The goal of the present study was to determine the expression of yes-associated protein 1 (YAP1) in renal tissues of mice with lupus nephritis (LN) and elucidate its role in the progression of renal fibrosis. <b><i>Methods:</i></b> C57BL/6 mice and MRL/lpr mice were selected for experimental comparison. Mouse kidney tissues were removed and sectioned for hematoxylin and eosin staining, Masson’s trichome staining, Sirius staining, and immunohistochemistry. The mRNA and protein levels of YAP1 in mouse kidney tissues were detected, and the correlation between YAP1 and fibronectin (FN) mRNA levels was analyzed. Mouse renal epithelial cells were used for in vitro experiments. After transfection and stimulation, the cells were divided into 4 groups, namely the C57BL/6 serum group (group 1), the MRL/lpr serum group (group 2), the MRL/lpr serum + siRNA-negative control group (group 3), and the MRL/lpr serum + siRNA-YAP1 group (group 4). Epithelial-mesenchymal transition (EMT) markers in each group were detected by Western blotting and immunofluorescence staining. Serum creatinine, blood urea nitrogen, and urinary protein levels were detected and assessed for their correlation with YAP1 mRNA levels by Spearman’s analysis. <b><i>Results:</i></b> Compared to C57BL/6 mice, MRL/lpr mice exhibited obvious changes in fibrosis in renal tissues. In addition, YAP1 expression was significantly higher in the renal tissues of MRL/lpr mice than in those of C57BL/6 mice, and YAP1 mRNA levels were positively correlated with those of FN. YAP1 silencing in lupus serum-stimulated cells could effectively relieve serum-induced EMT. Finally, we observed that YAP1 mRNA levels in mouse kidney tissue were significantly and positively correlated with the degree of renal function injury. <b><i>Conclusion:</i></b> YAP1 expression in the kidney tissues of LN mice was higher than that observed in normal mice, indicating that YAP1 may play an important role in the occurrence and development of LN.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maki Murakoshi ◽  
Tomohito Gohda ◽  
Eri Adachi ◽  
Saki Ichikawa ◽  
Shinji Hagiwara ◽  
...  

AbstractProgranulin (PGRN) has been reported to bind tumor necrosis factor (TNF) receptor and to inhibit TNFα signaling. We evaluated the effect of augmentation of TNFα signaling by PGRN deficiency on the progression of kidney injury. Eight-week-old PGRN knockout (KO) and wild-type (WT) mice were fed a standard diet or high-fat diet (HFD) for 12 weeks. Albuminuria, markers of tubular damage, and renal mRNA levels of inflammatory cytokines were higher in HFD-fed KO (KO-HFD) mice than in HFD-fed WT (WT-HFD) mice. Body weight, vacuolization in proximal tubules, and systemic and adipose tissue inflammatory markers were lower in the KO-HFD mice than in the WT-HFD mice. The renal megalin expression was lower in the KO mice than in the WT mice regardless of the diet type. The megalin expression was also reduced in mouse proximal tubule epithelial cells stimulated with TNFα and in those with PGRN knockdown by small interfering RNA in vitro. PGRN deficiency was associated with both exacerbated renal inflammation and decreased systemic inflammation, including that in the adipose tissue of mice with HFD-induced obesity. Improved tubular vacuolization in the KO-HFD mice might partially be explained by the decreased expression of megalin in proximal tubules.


Sign in / Sign up

Export Citation Format

Share Document