Groundwater lowering for construction of the Kilsby Tunnel – pumping and tunnelling

Author(s):  
Mike Chrimes ◽  
Martin Preene

The Kilsby Tunnel, constructed in the 1830s under the direction of Robert Stephenson, faced severe problems when a section of the tunnel, almost 400 m long, was driven through water-bearing unstable ‘quicksand’ conditions. Contemporary methods were not well suited to tunnelling through such conditions, and in previous decades, several canal tunnels had been planned to specifically divert around expected ‘bad ground’, and others took years to complete at great expense. Stephenson’s team, drawing on their experience from the mining industry, did not take this approach and ultimately worked through the unstable ground, albeit with considerable delays and cost increases. This was achieved in part by establishing a large-scale groundwater pumping system, unique for the time, that lowered groundwater levels and stabilised the quicksand, which resulted from a buried channel of glaciofluvial sands, cut into bedrock, that had been missed by trial borings. Steam engines were used to pump from multiple shafts (including four dedicated pumping shafts, off set from the tunnel alignment), with a reported pumping rate of 136 l/s for several months. One unusual feature was the use of flatrod systems to transmit mechanical power horizontally; this allowed a single engine to drive pumps in several different shafts.

Author(s):  
T. V. Galanina ◽  
M. I. Baumgarten ◽  
T. G. Koroleva

Large-scale mining disturbs wide areas of land. The development program for the mining industry, with an expected considerable increase in production output, aggravates the problem with even vaster territories exposed to the adverse anthropogenic impact. Recovery of mining-induced ecosystems in the mineral-extracting regions becomes the top priority objective. There are many restoration mechanisms, and they should be used in integration and be highly technologically intensive as the environmental impact is many-sided. This involves pollution of water, generation of much waste and soil disturbance which is the most typical of open pit mining. Scale disturbance of land, withdrawal of farming land, land pollution and littering are critical problems to the solved in the first place. One of the way outs is highquality reclamation. This article reviews the effective rules and regulations on reclamation. The mechanism is proposed for the legal control of disturbed land reclamation on a regional and federal level. Highly technologically intensive recovery of mining-induced landscape will be backed up by the natural environment restoration strategy proposed in the Disturbed Land Reclamation Concept.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 51
Author(s):  
Kyoochul Ha ◽  
Eunhee Lee ◽  
Hyowon An ◽  
Sunghyun Kim ◽  
Changhui Park ◽  
...  

This study was conducted to evaluate seasonal groundwater quality due to groundwater pumping and hydrochemical characteristics with groundwater level fluctuations in an agricultural area in Korea. Groundwater levels were observed for about one year using automatic monitoring sensors, and groundwater uses were estimated based on the monitoring data. Groundwater use in the area is closely related to irrigation for rice farming, and rising groundwater levels occur during the pumping, which may be caused by the irrigation water of rice paddies. Hydrochemical analysis results for two separate times (17 July and 1 October 2019) show that the dissolved components in groundwater decreased overall due to dilution, especially at wells in the alluvial aquifer and shallow depth. More than 50% of the samples were classified as CaHCO3 water type, and changes in water type occurred depending on the well location. Water quality changes were small at most wells, but changes at some wells were evident. In addition, the groundwater quality was confirmed to have the effect of saltwater supplied during the 2018 drought by comparison with seawater. According to principal component analysis (PCA), the water quality from July to October was confirmed to have changed due to dilution, and the effect was strong at shallow wells. In the study areas where rice paddy farming is active in summer, irrigation water may be one of the important factors changing the groundwater quality. These results provide a qualitative and quantitative basis for groundwater quality change in agricultural areas, particularly rice paddies areas, along with groundwater level and usage.


BMC Ecology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Anna L. K. Nilsson ◽  
Thomas Skaugen ◽  
Trond Reitan ◽  
Jan Henning L’Abée-Lund ◽  
Marlène Gamelon ◽  
...  

Abstract Background Earlier breeding is one of the strongest responses to global change in birds and is a key factor determining reproductive success. In most studies of climate effects, the focus has been on large-scale environmental indices or temperature averaged over large geographical areas, neglecting that animals are affected by the local conditions in their home ranges. In riverine ecosystems, climate change is altering the flow regime, in addition to changes resulting from the increasing demand for renewable and clean hydropower. Together with increasing temperatures, this can lead to shifts in the time window available for successful breeding of birds associated with the riverine habitat. Here, we investigated specifically how the environmental conditions at the territory level influence timing of breeding in a passerine bird with an aquatic lifestyle, the white-throated dipper Cinclus cinclus. We relate daily river discharge and other important hydrological parameters, to a long-term dataset of breeding phenology (1978–2015) in a natural river system. Results Dippers bred earlier when winter river discharge and groundwater levels in the weeks prior to breeding were high, and when there was little snow in the catchment area. Breeding was also earlier at lower altitudes, although the effect dramatically declined over the period. This suggests that territories at higher altitudes had more open water in winter later in the study period, which permitted early breeding also here. Unexpectedly, the largest effect inducing earlier breeding time was territory river discharge during the winter months and not immediately prior to breeding. The territory river discharge also increased during the study period. Conclusions The observed earlier breeding can thus be interpreted as a response to climate change. Measuring environmental variation at the scale of the territory thus provides detailed information about the interactions between organisms and the abiotic environment.


Author(s):  
Martin Preene ◽  
Mike Chrimes

The Kilsby Tunnel, constructed in the 1830s, faced severe problems when a section of the tunnel, almost 400 m long, encountered unstable ‘quicksand’ conditions. The engineer for the project, Robert Stephenson, developed an extensive groundwater lowering scheme, unique for the time, using steam engines pumping from multiple shafts, to overcome the quicksand. Modern geological information indicates most of the tunnel was in Middle Lias bedrock, but the ‘quicksand’ section passed through a buried channel of water-bearing sand of glacial origin. In the early 19th century the impact of glacial processes on British geology was not widely accepted and, based on contemporary geological knowledge, Stephenson’s problems appear to be genuine unforeseen ground conditions, not predicted by his experienced advisers. It seems just random chance that trial borings missed the buried channel of sand. The work at Kilsby was two decades before Darcy’s law established the theoretical understanding for groundwater flow, and 90 years before Terzaghi’s effective stress theory described how reducing pore water pressures changed ‘quicksand’ into a stable and workable material. Despite the lack of existing theories, Stephenson used careful observations and interpretation of groundwater flow in the ‘quicksand’ to navigate the tunnel project to a successful conclusion.


2015 ◽  
Vol 57 (5) ◽  
pp. 367-372 ◽  
Author(s):  
Deepankar Sharma ◽  
Priya Bhatnagar

Purpose – This paper aims to examine the community development approaches of large-scale mining companies, with particular reference to how they may engender community dependency. Design/methodology/approach – The paper begins with a review of corporate social responsibility (CSR) in the mining industry, corporate community initiatives and the problem of mining dependency at a national, regional and local levels. Findings – It outlines some of the reasons why less-developed countries (LDCs) experience under-development and detrimental effects as a result of their linkages with industrialized countries. LDCs are not able to take advantage of advanced technology and management skills due to being relatively poor in capital and skills, and foreign technologies compete unfairly with and destroy local production techniques, creating a pool of unemployable “marginalized” people. Holder’s of investments in LDCs demand annual returns for continued support – profits are taken out of the country or guaranteed by tax concessions. Unwillingness of foreign firms to train local people to take over management positions. Originality/value – This paper explores how the need to address sustainability issues has affected communities, and whether community development initiatives have been effective in contributing to more sustainable communities.


Author(s):  
Florian Brückner ◽  
Rebecca Bahls ◽  
Mohammad Alqadi ◽  
Falk Lindenmaier ◽  
Ibraheem Hamdan ◽  
...  

AbstractIn 2017, a comprehensive review of groundwater resources in Jordan was carried out for the first time since 1995. The change in groundwater levels between 1995 and 2017 was found to be dramatic: large declines have been recorded all over the country, reaching more than 100 m in some areas. The most affected areas are those with large-scale groundwater-irrigated agriculture, but areas that are only used for public water supply are also affected. The decrease of groundwater levels and saturated thickness poses a growing threat for drinking water supply and the demand has to be met from increasingly deeper and more remote sources, causing higher costs for drilling and extraction. Groundwater-level contour lines show that groundwater flow direction has completely reversed in some parts of the main aquifer. Consequently, previously established conceptual models, such as the concept of 12 “groundwater basins” often used in Jordan should be revised or replaced. Additionally, hydraulic conditions are changing from confined to unconfined; this is most likely a major driver for geogenic pollution with heavy metals through leakage from the overlying bituminous aquitard. Three exemplary case studies are presented to illustrate and discuss the main causes for the decline of the water tables (agriculture and population growth) and to show how the results of this assessment can be used on a regional scale.


2021 ◽  
Author(s):  
Yogi Suardiwerianto ◽  
Sofyan Kurnianto ◽  
Adibtya Asyhari ◽  
Tubagus Muhamad Risky ◽  
Muhammad Fikky Hidayat ◽  
...  

<p>Transpiration is a key process in the terrestrial ecosystems linking water, carbon, and energy exchanges between the vegetation and the atmosphere. However, the understanding of transpiration rate, its spatiotemporal dynamics, and the controlling factors in tropical peatlands are still constrained by limited measurements. This study aims to investigate the transpiration rates at the stand level of Acacia plantation under different groundwater levels. The measurements were performed at two large-scale lysimeter plots with groundwater level of 40 and 80 cm below the ground surface. The transpiration rate was quantified based on sap flow measurements from 16 trees with different diameters at breast height using heat ratio method. The initial results indicate that the transpiration rate was closely correlated to the meteorological parameters, including atmospheric vapor pressure deficit and solar radiation. The two plots with different groundwater level regimes exhibit the same diurnal pattern of transpiration rate yet shows differences in their magnitude. The findings from this study will improve the understanding about relative contribution of transpiration to the total water balance under different groundwater levels. Further, an ongoing measurement of above and below-ground biomass growth and hydrological modeling work will advance the knowledge on plant-water interaction from this ecosystem.</p>


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1227 ◽  
Author(s):  
Carrasco ◽  
Álvarez ◽  
Velázquez ◽  
Concha ◽  
Pérez-Cotapos

One of the most widely used electro-mechanical systems in large-scale mining is the electric motor. This device is employed in practically every phase of production. For this reason, it needs to be inspected regularly to maintain maximum operability, thus avoiding unplanned stoppages. In order to identify potential faults, regular check-ups are performed to measure the internal parameters of the components, especially the brushes and brush-holders. Both components must be properly aligned and calibrated to avoid electric arcs to the internal insulation of the motor. Although there is an increasing effort to improve inspection tasks, most inspection procedures are manual, leading to unnecessary costs in inspection time, errors in data entry, and, in extreme cases, measurement errors. This research presents the design, development, and assessment of an integrated measurement prototype for measuring spring tension and other key parameters in brush-holders used in electric motors. It aims to provide the mining industry with a new, fully automatic inspection system that will facilitate maintenance and checking. Our development research was carried out specifically on the brush system of a SAG grinding mill motor. These machines commonly use SIEMENS motors; however, the instrument can be easily adapted to any motor by simply changing the physical dimensions of the prototype.


2019 ◽  
Vol 8 (3) ◽  
Author(s):  
Saad Younes Ghoubachi

El-Oweinat area is located in southwestern Egypt and is considered to be one of the new land reclamation projects in the Western Desert. The Nubian Sandstone aquifer has high potentiality and good groundwater quality. The results of geologic and hydrogeologic studies reveal that the Six Hills sandstone aquifer represents the sole groundwater resource used for all purposes (agriculture, drinking, domestic, livestock and poultry) in East El-Oweinat area. The Six Hills sandstone aquifer overlies directly the Precambrian basement rocks. The concerned aquifer exists under unconfined conditions as it is exposed on the surface. The hydrogeological cross sections show that the fully saturated thickness of the Six Hills sandstone aquifer ranges between 150.2 m and 651 m and increases towards the west. The groundwater generally flows towards the northeast direction with an average hydraulic gradient of 0.6 ‰. The calculated groundwater volume of the Six Hills sandstone aquifer in East El-Oweinat area (4,340 km2) reaches 350 bcm of fresh water. The comparison of the depth to water in the same monitoring wells during 14 years (2003 and 2016) reveals that the head decline rate in groundwater depths were ranging between 5 cm/year and 80 cm/year. The pumping rate increased from 600,000 m3/day in year 2003 to 3,600,000 m3/day in 2016. The average transmissivity attains 2,060 m2/day reflecting the high potential of the Six Hills sandstone aquifer in East El-Oweinat area. The groundwater flow model (MODFLOW) has been used to investigate the impact of groundwater withdrawal on groundwater levels for sustainable groundwater management. Four scenarios were applied to predict the probable head changes in the Six Hills sandstone aquifer and their impact on the availability of groundwater. The fourth scenario is recommended in order to sustain the groundwater resources in the study area and keep the drawdown rates in the range of 0.66 m/year through reducing the present discharging rates (10,000 m3/day/well) by about 40%.


Safety ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 9 ◽  
Author(s):  
Eric Stemn ◽  
Florence Ntsiful ◽  
Marconi Afenyo Azadah ◽  
Theophilus Joe-Asare

Background: This research sought to understand the perspective of mineworkers regarding incident investigations, with the objective of identifying incident investigations improvement opportunities. First, through interviews, the research sought to identify the causal factors considered during investigations and the reasons for conducting investigations in the Ghanaian mining industry. Secondly, through questionnaire surveys, the study focused on understanding the extent to which a large sample of mineworkers considered the identified causal factors and investigation reasons relevant and applicable in their mine. Method: Data were collected from 41 participants through interviews and 659 respondents through surveys, and the data were analyzed through thematic, content, and statistical analyses, including descriptive statistics, one-way ANOVA, and correlation analysis. Result: The interviews led to the identification of five and nine categories of incident causal factors and reasons for investigating incidents, respectively. The results suggested a focus on workers’ unsafe acts as the main incident causal factor and identifying the person who caused the incident as one of the major reasons for investigating incidents, as these two factors where the modal choice from both the interviews and survey across all five mines. The results further showed that concerning the accident causal factors and the reasons for investigating incidents, no significant difference was observed between the perspectives of mineworkers involved in investigations and mineworkers with no investigation responsibilities. Conclusion: It can be concluded from the results that talking to ordinary mineworkers does not generate innovative safety responses in this context, as the workers believe whatever they are taught, without critiquing it. Again, the focus on workers’ behavior as an accident causal factor is an indication of single-loop learning in contrast to double-loop learning, and its implication as well as opportunities to strengthen incident investigation focusing on improving organizational safety have been discussed.


Sign in / Sign up

Export Citation Format

Share Document