scholarly journals Expression of Megsin mRNA, a Novel Mesangium-Predominant Gene, in the Renal Tissues of Various Glomerular Diseases

1999 ◽  
Vol 10 (12) ◽  
pp. 2606-2613
Author(s):  
DAISUKE SUZUKI ◽  
TOSHIO MIYATA ◽  
MASAOMI NANGAKU ◽  
HIDEO TAKANO ◽  
NOBORU SAOTOME ◽  
...  

Abstract. Mesangial cells play an important role in maintaining a structure and function of the glomerulus and in the pathogenesis of glomerular diseases. Recently, we discovered a new mesangium-predominant gene termed “megsin.” Megsin is a novel protein that belongs to the serine protease inhibitor (serpin) superfamily. To elucidate the pathophysiologic role of megsin in the kidney, the expression and localization of megsin mRNA in renal tissues of patients with IgA nephropathy (IgA-N), diabetic nephropathy (DN), minimal change nephrotic syndrome (MCNS), membranous nephropathy (MN), and normal human kidney (NHK) was evaluated by in situ hybridization using digoxigenin-labeled oligonucleotide. Individual cells positive for megsin mRNA were observed only in glomeruli in all renal tissues. Their localization coincided with those of mesangial cells. The percentage of positive cells for megsin mRNA in total glomerular cells was significantly greater in IgA-N than in MCNS, MN, and NHK. It was also significantly greater in DN than in MCNS and NHK. In IgA-N, the percentage of megsin mRNA-positive cells was greater in tissues from those with mesangial cell proliferation and slightly mesangial matrix expansion (periodic acid-Schiff-positive area in the total glomerulus area, <30%; cell number in mesangial matrix area, >30; assessed in cross-sections through their vascular poles) than in tissues from those with severe mesangial matrix expansion (periodic acid-Schiff-positive area in total glomerulus area, >30%; cell number in mesangial matrix area, <30). In conclusion, megsin mRNA was predominantly expressed in glomerular mesangial cells in all renal tissues. The expression of megsin mRNA was upregulated in IgA-N and DN, both of which are diseases accompanied with mesangial cell proliferation and/or mesangial matrix expansion. These data suggest a link of megsin expression to the pathogenesis of IgA-N and DN, two major causes of end-stage renal failure.

1992 ◽  
Vol 3 (4) ◽  
pp. 921-929
Author(s):  
W W Tang ◽  
C B Wilson

Anti-rat thymocyte antibody-induced injury of glomerular mesangial cells is characterized initially by lysis (1 h) and is followed by proliferation (beginning at 3 to 4 days), with resolution that can include a focal increase in mesangial matrix (by 28 days). Chronic administration (every 12 h) of heparin (anticoagulant or nonanticoagulant) resulted in a decrease in antibody-induced mesangial cell proliferation, which, in turn, was associated with a decrease in the size and number of areas of focal mesangial matrix increase. The effect could not be attributed to the effect of heparin on complement, to alterations in the small numbers of la-positive cells that characterize the lesion, or to binding of antibody to glomeruli. The beneficial effects of heparin in reducing mesangial cell proliferation, with a subsequent reduction in matrix increase, suggest that mesangial cell responses are a major element in the development of at least some forms of glomerulosclerosis. The possible mechanisms by which these effects of heparin may be achieved are discussed.


2007 ◽  
Vol 292 (1) ◽  
pp. F76-F81 ◽  
Author(s):  
Helen R. Lock ◽  
Steven H. Sacks ◽  
Michael G. Robson

In view of its proven antiproliferative effects, rapamycin offers potential in the treatment of mesangioproliferative disease. Previous data have shown an effect of rapamycin on mesangial cell proliferation at high doses and have not explored the mechanism of action. Therefore, we explored the effects and mechanism of action of low levels of rapamycin on mesangial cell proliferation. Primary cultures of mouse mesangial cells were grown in medium containing serum with differing concentrations of rapamycin. A rapamycin concentration of 0.1 ng/ml caused a decrease in cell number and DNA synthesis with no effect on apoptosis. Type IV collagen protein production was inhibited at 0.01 ng/ml rapamycin, although gene expression was unaffected. P70S6K phosphorylation was inhibited in parallel with the effects on cell number and DNA synthesis in a dose-dependent manner, but no effect was seen at 0.01 ng/ml rapamycin. These data show an effect on mesangial cell proliferation and p70S6 kinase phosphorylation of 0.1 ng/ml rapamycin and an effect on collagen IV production of 0.01 ng/ml rapamycin. We suggest that further in vivo studies should explore the potential for low-dose rapamycin in the treatment of mesangioproliferative glomerulonephritis.


1997 ◽  
Vol 273 (6) ◽  
pp. F916-F924 ◽  
Author(s):  
Ayad A. Jaffa ◽  
Bradley S. Miller ◽  
Steven A. Rosenzweig ◽  
Padma S. Naidu ◽  
Victoria Velarde ◽  
...  

Glomerular hypertension and glomerular hypertrophy act early and synergistically to promote glomerular injury in diabetes. We have previously shown that increased renal kinin production contributes to the glomerular hemodynamic abnormalities associated with diabetes. Glomerulosclerosis, characterized by mesangial cell proliferation and matrix expansion, is the final pathway leading to renal failure. The signal(s) initiating mesangial cell proliferation is ill defined. In the present study, we utilized immunofluorescence, immunoprecipitation, and immunoblotting techniques to identify substrates that are tyrosine phosphorylated in response to bradykinin action in mesangial cells. Immunofluorescence microscopy of mesangial cells stained with anti-phosphotyrosine (anti-PY) antibodies following bradykinin treatment (10−9–10−6M) revealed a dose-dependent increase in the labeling of cytoplasmic and nuclear proteins. Immunoprecipitation with anti-PY, followed by immunoblot revealed bradykinin-induced tyrosyl phosphorylation of tubulin and mitogen-activated protein kinase (MAPK). Confocal microscopy of mesangial cells stained for MAPK indicated that bradykinin stimulation resulted in translocation of MAPK from the cytoplasm to the nucleus by 2 h. These data demonstrate that bradykinin action results in the tyrosine phosphorylation of cellular proteins in mesangial cells and suggest a role for tubulin and MAPK in the signaling cascade of bradykinin leading to altered mesangial function.


2021 ◽  
Vol 10 (18) ◽  
pp. 4236
Author(s):  
Won Jung Choi ◽  
Yu Ah Hong ◽  
Ji Won Min ◽  
Eun Sil Koh ◽  
Hyung Duk Kim ◽  
...  

IgA nephropathy (IgAN) is a globally well-known primary glomerular nephropathy. Hypertriglyceridemia (HTG) is one factor contributing to atherosclerosis and is a common complication of renal failure. HTG is a significant risk factor for decreased renal function in patients with IgAN. We evaluated the association of HTG with the histopathological features of IgAN patients. A total of 480 patients diagnosed with IgAN via kidney biopsy from eight university hospitals affiliated with the College of Medicine of the Catholic University of Korea were included in the final cohort. Pathological features were evaluated by eight expert pathologists with hospital consensus. HTG was defined as a serum triglyceride (TG) level of ≥150 mg/dL. In the study population analysis, the HTG group was older, with more males; higher body mass index (BMI), low-density lipoprotein cholesterol (LDL-C) and spot urine protein ratio; and lower estimated glomerular filtration rate (eGFR). In the lipid profile analysis, eGFR was negatively correlated with TGs/ high-density lipoprotein cholesterol (HDL) and triglyceride-glucose index (TyG). Proteinuria positively correlated with TGs/HDL, non-HDL/HDL, LDL/HDL, TyG, TGs and LDL. The percentages of global sclerosis (GS), segmental sclerosis (SS) and capsular adhesion (CA), and the scores for mesangial matrix expansion (MME) and mesangial cell proliferation (MCP), were more elevated in the HTG group compared to the normal TG group. Multivariable linear regression analysis showed that the percentages of global sclerosis, segmental sclerosis and capsular adhesion, as well as the scores for mesangial matrix expansion and mesangial cell proliferation, were positively associated with TG level. In binary logistic regression, the HTG group showed a higher risk for global sclerosis and segmental sclerosis. In conclusion, HTG is a significant risk factor for glomerulosclerosis in IgAN.


2009 ◽  
Vol 297 (3) ◽  
pp. F679-F684 ◽  
Author(s):  
Mari Tomiyama-Hanayama ◽  
Hiromi Rakugi ◽  
Masaharu Kohara ◽  
Toru Mima ◽  
Yasuo Adachi ◽  
...  

Hyperlipidemia has been demonstrated to be associated with renal disease, yet the mechanism of renal injury is still poorly understood. Inflammation that occurs with the hyperlipidemia has been considered to play an important role in development of glomerular injury. In the present study, we investigated the role of interleukin-6 (IL-6), a key inflammatory molecule, on renal injury in apolipoprotein E-deficient (ApoE−/−) mice with severe hypercholesterolemia. The 6-wk-old mice were fed a high-fat diet and administered weekly rat anti-IL-6 receptor monoclonal antibody (MR16-1), control rat IgG, or saline for a total of 4 wk. We examined histopathological changes in the kidney and urinary excretion of protein and albumin. Saline- and IgG-treated mice showed remarkable proteinuria at 10 wk of age, whereas MR16-1-treated mice exhibited significantly lower levels. Renal histopathology of saline- and IgG-treated mice revealed striking lipid deposits and foam cells in the glomerular tuft, juxtaglomerular area, and arteriolar wall along with range of mesangial cell proliferation and matrix expansion. Notably, the severity of lipid deposits and mesangial cell proliferation were significantly reduced in MR16-1-treated mice. Immunohistochemistry demonstrated that mesangial IL-6 expression was dramatically reduced in MR16-1-treated mice compared with IgG-treated mice. Blocking the IL-6 receptor prevented progression of proteinuria and renal lipid deposit, as well as the mesangial cell proliferation associated with severe hyperlipoproteinemia. These results clearly demonstrate that IL-6 plays an essential role in the pathogenesis of hyperlipidemia-induced glomerular injury in ApoE−/− mice and suggests the usefulness of anti-IL-6 receptor antibody in treatments for hyperlipidemia-induced organ damage.


2020 ◽  
Vol 21 (19) ◽  
pp. 7003
Author(s):  
Jung Joo Yoon ◽  
Hyeon Kyoung Lee ◽  
Hye Yoom Kim ◽  
Byung Hyuk Han ◽  
Ho Sub Lee ◽  
...  

Abnormal and excessive growth of mesangial cells is important in the pathophysiologic processes of diabetes-associated interstitial fibrosis and glomerulosclerosis, leading to diabetic nephropathy, which eventually turns into end-stage renal disease. Sauchinone, a biologically-active lignan isolated from aerial parts of Saururus chinensis, has anti-inflammatory and anti-viral activities effects on various cell types. However, there are no studies reporting the effects of sauchinone on diabetic nephropathy. The present study aims to investigate the role of sauchinone in mesangial cell proliferation and fibrosis induced by angiotensin II, as well as the underlying mechanisms of these processes. Human renal mesangial cells were induced by angiotensin II (AngII, 10 μM) in the presence or absence of sauchinone (0.1–1 μM) and incubated for 48 h. In this study, we found that AngII induced mesangial cell proliferation, while treatment with sauchinone inhibited the cell proliferation in a dose-dependent manner. Pre-treatment with sauchinone induced down-regulation of cyclins/CDKs and up-regulation of CDK inhibitor, p21, and p27kip1 expression. In addition, AngII-enhanced expression of fibrosis biomarkers such as fibronectin, collagen IV, and connective tissue growth factor (CTGF), which was markedly attenuated by sauchinone. Sauchinone also decreased AngII-induced TGF-β1 and Smad-2, Smad-3, and Smad-4 expression. This study further revealed that sauchinone ameliorated AngII-induced mesangial inflammation through disturbing activation of inflammatory factors, and NLRP3 inflammasome, which is composed of the NLRP3 protein, procaspase-1, and apoptosis-associated speck-like protein containing a CARD (ASC). Moreover, pretreatment of sauchinone inhibited NF-κB translocation and ROS production in AngII-exposed mesangial cells. These data suggest that sauchinone has a protective effect on renal proliferation, fibrosis and inflammation. Therefore, sauchinone might be a potential pharmacological agent in prevention of AngII-induced renal damage leading to diabetic nephropathy.


2014 ◽  
Vol 306 (11) ◽  
pp. C1089-C1100 ◽  
Author(s):  
Amit Bera ◽  
Falguni Das ◽  
Nandini Ghosh-Choudhury ◽  
Xiaonan Li ◽  
Sanjay Pal ◽  
...  

Platelet-derived growth factor BB and its receptor (PDGFRβ) play a pivotal role in the development of renal glomerular mesangial cells. Their roles in increased mesangial cell proliferation during mesangioproliferative glomerulonephritis have long been noted, but the operating logic of signaling mechanisms regulating these changes remains poorly understood. We examined the role of a recently identified MAPK, Erk5, in this process. PDGF increased the activating phosphorylation of Erk5 and tyrosine phosphorylation of proteins in a time-dependent manner. A pharmacologic inhibitor of Erk5, XMD8-92, abrogated PDGF-induced DNA synthesis and mesangial cell proliferation. Similarly, expression of dominant negative Erk5 or siRNAs against Erk5 blocked PDGF-stimulated DNA synthesis and proliferation. Inhibition of Erk5 attenuated expression of cyclin D1 mRNA and protein, resulting in suppression of CDK4-mediated phosphorylation of the tumor suppressor protein pRb. Expression of cyclin D1 or CDK4 prevented the dominant negative Erk5- or siErk5-mediated inhibition of DNA synthesis and mesangial cell proliferation induced by PDGF. We have previously shown that phosphatidylinositol 3-kinase (PI3-kinase) contributes to PDGF-induced proliferation of mesangial cells. Inhibition of PI3-kinase blocked PDGF-induced phosphorylation of Erk5. Since PI3-kinase acts through Akt, we determined the role of Erk5 on Akt phosphorylation. XMD8-92, dominant negative Erk5, and siErk5 inhibited phosphorylation of Akt by PDGF. Interestingly, we found inhibition of PDGF-induced Erk5 phosphorylation by a pharmacological inhibitor of Akt kinase and kinase dead Akt in mesangial cells. Thus our data unfold the presence of a positive feedback microcircuit between Erk5 and Akt downstream of PI3-kinase nodal point for PDGF-induced mesangial cell proliferation.


2002 ◽  
Vol 13 (2) ◽  
pp. 322-331 ◽  
Author(s):  
Youichi Sugenoya ◽  
Ashio Yoshimura ◽  
Hisako Yamamura ◽  
Kiyoko Inui ◽  
Hiroyuki Morita ◽  
...  

ABSTRACT. The basic or h1 calponin gene, which encodes an actin-binding protein involved in the regulation of smooth-muscle shortening velocity, is known to be a smooth-muscle differentiation-specific gene. It was found that basic calponin was expressed by cultured mesangial cells and localized along the actin filaments. Among the growth factors involved in the mesangial cell pathophysiology, including platelet-derived growth factor-BB (PDGF-BB), tumor necrosis factor–α (TNF-α), and transforming growth factor–β1 (TGF-β1), TNF-α potently downregulates basic calponin expression in both the mRNA and protein levels, whereas TGF-β1 upregulates the calponin expression. PDGF-BB also reduced its mRNA expression. The half-life of basic calponin mRNA was determined to be similar between TNF-α–treated and –untreated mesangial cells, whereas cell transfection assays that used a luciferase reporter gene construct containing the functional basic calponin promoter showed that TNF-α and PDGF-BB reduced the transcriptional activity. Because stimulation with TNF-α and PDGF-BB was associated with mesangial cell proliferation, basic calponin may play a role in the suppression of mesangial cell proliferation. Treatment with anti–glomerular basement membrane antibody in calponin knockout mice induced more severe nephritis than in wild type mice, as judged from an increase in the urinary protein excretion, glomerular cellularity, and number of proliferating cell nuclear antigen–positive cells in glomerulus. These results suggest that basic calponin expression may serve as one of the intrinsic regulators of glomerular nephritis. Elucidation of the molecular mechanisms for regulation of the basic calponin expression in mesangial cells may improve the understanding of the molecular basis and pathogenesis of the glomerular response to injury.


Sign in / Sign up

Export Citation Format

Share Document