scholarly journals RADAR CHARACTERISTICS OF CLOUD SYSTEMS DURING HEAVY RAIN EVENTS

Author(s):  
Sergey V. Kostarev ◽  
◽  
Andrey L. Vetrov ◽  
Bogdan A. Sivkov ◽  
Anna A. Pomortseva ◽  
...  

The paper analyzes radar characteristics of mesoscale precipitation systems associated with heavy precipitation in Western Urals. The characteristics under study, obtained from the Doppler weather radar, include the maximum height of the radar echo of clouds and precipitation, meteorological phenomena, speed and direction of the radar echo movement. An attempt was made to classify mesoscale precipitation systems with respect to their horizontal scales and geometrical features as well as precipitation patterns. Statistical features of radar characteristics of cloud systems causing heavy rain were calculated taking into account their classification by horizontal scales. Radar meteorological characteristics were obtained from instruments in the Izhevsk city and Ufa city for the warm period of 2016–2017. The results can be used during nowcasting of heavy precipitation events.

2017 ◽  
Vol 34 (5) ◽  
pp. 1001-1019 ◽  
Author(s):  
Biyan Chen ◽  
Zhizhao Liu ◽  
Wai-Kin Wong ◽  
Wang-Chun Woo

AbstractWater vapor has a strong influence on the evolution of heavy precipitation events due to the huge latent heat associated with the phase change process of water. Accurate monitoring of atmospheric water vapor distribution is thus essential in predicting the severity and life cycle of heavy rain. This paper presents a systematic study on the application of tomographic solutions to investigate water vapor variations during heavy precipitation events. Using global positioning system (GPS) observations, the wet refractivity field was constructed at a temporal resolution of 30 min for three heavy precipitation events occurring in Hong Kong, China, in 2010–14. The zenith wet delay (ZWD) is shown to be a good indicator in observing the water vapor evolution in heavy rain events. The variabilities of water vapor at five altitude layers (<1000, 1000–2000, 2000–3000, 3000–5000, and >5000 m) were examined. It revealed that water vapor above 3000 m has larger fluctuation than that under 3000 m, though it accounts for only 10%–25% of the total amount of water vapor. The relative humidity fields derived from tomographic results revealed moisture variation, accumulation, saturation, and condensation during the heavy rain events. The water vapor variabilities observed by tomography have been validated using European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis and radiosonde data. The results positively demonstrated the potential of using water vapor tomographic technique for detecting and monitoring the evolution of heavy rain events.


2012 ◽  
Vol 13 (1) ◽  
pp. 47-66 ◽  
Author(s):  
Pavel Ya. Groisman ◽  
Richard W. Knight ◽  
Thomas R. Karl

Abstract In examining intense precipitation over the central United States, the authors consider only days with precipitation when the daily total is above 12.7 mm and focus only on these days and multiday events constructed from such consecutive precipitation days. Analyses show that over the central United States, a statistically significant redistribution in the spectra of intense precipitation days/events during the past decades has occurred. Moderately heavy precipitation events (within a 12.7–25.4 mm day−1 range) became less frequent compared to days and events with precipitation totals above 25.4 mm. During the past 31 yr (compared to the 1948–78 period), significant increases occurred in the frequency of “very heavy” (the daily rain events above 76.2 mm) and extreme precipitation events (defined as daily and multiday rain events with totals above 154.9 mm or 6 in.), with up to 40% increases in the frequency of days and multiday extreme rain events. Tropical cyclones associated with extreme precipitation do not significantly contribute to the changes reported in this study. With time, the internal precipitation structure (e.g., mean and maximum hourly precipitation rates within each preselected range of daily or multiday event totals) did not noticeably change. Several possible causes of observed changes in intense precipitation over the central United States are discussed and/or tested.


2016 ◽  
Vol 31 (4) ◽  
pp. 1397-1405
Author(s):  
Weihong Qian ◽  
Ning Jiang ◽  
Jun Du

Abstract Mathematical derivation, meteorological justification, and comparison to model direct precipitation forecasts are the three main concerns recently raised by Schultz and Spengler about moist divergence (MD) and moist vorticity (MV), which were introduced in earlier work by Qian et al. That previous work demonstrated that MD (MV) can in principle be derived mathematically with a value-added empirical modification. MD (MV) has a solid meteorological basis. It combines ascent motion and high moisture: the two elements necessary for rainfall. However, precipitation efficiency is not considered in MD (MV). Given the omission of an advection term in the mathematical derivation and the lack of precipitation efficiency, MD (MV) might be suitable mainly for heavy rain events with large areal coverage and long duration caused by large-scale quasi-stationary weather systems, but not for local intense heavy rain events caused by small-scale convection. In addition, MD (MV) is not capable of describing precipitation intensity. MD (MV) worked reasonably well in predicting heavy rain locations from short to medium ranges as compared with the ECMWF model precipitation forecasts. MD (MV) was generally worse than (though sometimes similar to) the model heavy rain forecast at shorter ranges (about a week) but became comparable or even better at longer ranges (around 10 days). It should be reiterated that MD (MV) is not intended to be a primary tool for predicting heavy rain areas, especially in the short range, but is a useful parameter for calibrating model heavy precipitation forecasts, as stated in the original paper.


2021 ◽  
Author(s):  
Erik Schwarz ◽  
Swamini Khurana ◽  
Luciana Chavez Rodriguez ◽  
Johannes Wirsching ◽  
Christian Poll ◽  
...  

&lt;p&gt;Despite all legislative efforts, pesticides persist in soils at low concentrations and are leached to groundwater. This environmental issue has previously been associated with control factors relevant in natural soils but elusive in lab experiments and standard modeling approaches. One such factor is the small-scale spatial distribution of pesticide-degrading microorganisms in soil. Microbes are distributed heterogeneously in natural soils. They are aggregated in biogeochemical &amp;#8220;hotspots&amp;#8221; at the centimeter scale. The aim of our study is to investigate the relevance of such aggregation for pesticide degradation. For this, we upscaled the effect of the heterogeneity-induced accessibility limitations to degradation to the soil-column scale and analyzed kinetic constraints and amplifying factors under contrasting unsaturated flow regimes.&lt;/p&gt;&lt;p&gt;We performed a 2D spatially explicit, site-specific model-based scenario analysis for bioreactive transport of the model pesticide 4-chloro-2-methylphenoxyacetic acid (MCPA) in an arable soil (Luvisol). Stochastic centimeter-scale spatial distributions of microbial degraders were simulated with a spatial statistical model (log Gaussian Cox process), parametrized to meet experimentally observed spatial distribution metrics. Three heterogeneity levels were considered, representing homogenized soil conditions, and the lower and upper limit of expected microbial spatial aggregation in natural soils. Additionally, two contrasting precipitation scenarios (continuous light rain vs. heavy rain events directly following MCPA application) were assessed. A reactive transport model was set up to simulate a 0.3 m x 0.9 m soil column based on hydraulic and bioreactive measurements from a soil monitoring station (Germany, SM#3/ DFG CRC 1253 CAMPOS).&lt;/p&gt;&lt;p&gt;Our simulations revealed that heavy precipitation events were the main driver of pesticide leaching. Leached amounts from the topsoil increased by two to five orders of magnitude compared to the light rain scenario and at max. ca. 20 ng was leached from 90 cm after one year. With the increasing spatial aggregation of microbial degraders, upscaled pesticide degradation rates decreased, and considerable differences emerged between homogeneous and highly aggregated scenarios. In the latter, leaching from the plow layer into the subsoil was more pronounced and MCPA was detectable (LOD = 4 &amp;#181;g/kg) 5-6 times longer. In heterogeneous scenarios, degradation in microbial hotspots was mainly diffusion-limited during &amp;#8220;hot moments&amp;#8221; (times of high substrate availability), with a fraction of MCPA simultaneously &amp;#8220;locked in&amp;#8221; in coldspots with low microbial abundance. During intense precipitation events MCPA was remobilised from these coldspots by advective-dispersive transport, thereby increasing pesticide accessibility.&lt;/p&gt;&lt;p&gt;Our results indicate that predicted environmental concentrations and detectability of pesticides might be underestimated if spatial heterogeneity of microbial degraders is neglected, and they highlight the importance of heavy rain events as drivers of leaching and substrate accessibility.&lt;/p&gt;


2021 ◽  
Author(s):  
Haoyang Du ◽  
Manchun Li ◽  
Penghui Jiang ◽  
Haoqing Tang ◽  
Xiaolong Jin ◽  
...  

Abstract Precipitation is critical for maintaining ecosystem stability, especially in arid regions. This study was primarily focused on the changes during the present (i.e., from 1985 to 2005) and future (i.e., from 2040 to 2059) periods in Xinjiang, northwest China. To predict the future climate, the Weather Research and Forecasting model was run in Xinjiang using National Climate Research Center Community Climate System Model version 4 for the mid-21st century under representative concentration pathways 4.5 and 8.5 (RCP4.5 and RCP8.5, respectively). The results indicate that the amount of annual precipitation would increase in the future under RCP4.5 and RCP8.5 in Xinjiang, especially in the mountainous areas. The increase in precipitation was predicted to be much smaller under RCP8.5 than under RCP4.5, except in Southern Xinjiang. Moreover, the increased precipitation predicted in Xinjiang implies that the current humid and warm conditions will continue. In addition, the largest increase in seasonal precipitation was predicted to occur in spring and summer in Tianshan and Northern Xinjiang, whereas this phenomenon will occur in spring and winter in Southern Xinjiang. In addition, it was predicted that daily heavy precipitation events will occur more frequently in various subregions of Xinjiang, although light rain events will remain dominant. Finally, the increase in the frequency of heavy precipitation events was found to be related to the vertically integrated column precipitation, whereas the relative humidity was observed to be closely related to the changes in annual and seasonal precipitation.


2019 ◽  
Vol 100 (1) ◽  
pp. 55-70 ◽  
Author(s):  
Allen B. White ◽  
Benjamin J. Moore ◽  
Daniel J. Gottas ◽  
Paul J. Neiman

AbstractDuring winter 2016/17, California experienced numerous heavy precipitation events linked to land-falling atmospheric rivers (ARs) that filled reservoirs and ended a severe, multiyear drought. These events also caused floods, mudslides, and debris flows, resulting in major socioeconomic disruptions. During 2–11 February 2017, persistent heavy precipitation in the northern Sierra Nevada culminated in a rapid increase in the water level on Lake Oroville, necessitating the activation of an emergency spillway for the first time since the Oroville Dam was installed and forcing the evacuation of 188,000 people. The precipitation, which mostly fell as rain due to elevated freezing levels, was focused on the western slope of the Sierra Nevada in connection with orographic forcing linked to two successive ARs. Heavy rain fell on saturated soils and a snowpack produced by antecedent storms and thereby resulted in excessive runoff into Lake Oroville that led to a damaged spillway and complicated reservoir operations.


2021 ◽  
Vol 22 (5) ◽  
pp. 1199-1219
Author(s):  
Zhangkang Shu ◽  
Jianyun Zhang ◽  
Junliang Jin ◽  
Lin Wang ◽  
Guoqing Wang ◽  
...  

AbstractWe evaluated 24-h control forecast products from The International Grand Global Ensemble center over the 10 first-class water resource regions of Mainland China in 2013–18 from the perspective of precipitation processes (continuous) and precipitation events (discrete). We evaluated the forecasts from the China Meteorological Administration (CMA), the Centro de Previsão de Tempo e Estudos Climáticos (CPTEC), the Canadian Meteorological Centre (CMC), the European Centre for Medium-Range Weather Forecasts (ECMWF), the Japan Meteorological Agency (JMA), the Korea Meteorological Administration (KMA), the United Kingdom Met Office (UKMO), and the National Centers for Environmental Prediction (NCEP). We analyzed the differences among the numerical weather prediction (NWP) models in predicting various types of precipitation events and showed the spatial variations in the quantitative precipitation forecast efficiency of the NWP models over Mainland China. Meanwhile, we also combined four hydrological models to conduct meteo-hydrological runoff forecasting in three typical basins and used the Bayesian model averaging (BMA) method to perform the ensemble forecast of different scenarios. Our results showed that the models generally underestimate and overestimate precipitation in northwestern China and southwestern China, respectively. This tendency became increasingly clear as the lead time rose. Each model has a high reliability for the forecast of no-rain and light rain in the next 10 days, whereas the NWP model only has high reliability on the next day for moderate and heavy rain events. In general, each model showed different capabilities of capturing various precipitation events. For example, the CMA and CMC forecasts had a better prediction performance for heavy rain but greater errors for other events. The CPTEC forecast performed well for long lead times for no-rain and light rain but had poor predictability for moderate and heavy rains. The KMA, UKMO, and NCEP forecasts performed better for no-rain and light rain. However, their forecasting ability was average for moderate and heavy rain. Although the JMA model performed better in terms of errors and accuracy, it seriously underestimated heavy rain events. The extreme rainstorm and flood forecast results of the coupled JMA model should be treated with caution. Overall, the ECMWF had the most robust performance. Discrepancies in the forecasting effects of various models on different precipitation events vary with the lead time and region. When coupled with hydrological models, NWP models not only control the accuracy of runoff prediction directly but also increase the difference among the prediction results of different hydrological models with the increase in NWP error significantly. Among all the single models, ECMWF, JMA, and NCEP have better effects than the other models. Moreover, the ensemble forecast based on BMA is more robust than the single model, which can improve the quality of runoff prediction in terms of accuracy and reliability.


2019 ◽  
Vol 20 (5) ◽  
pp. 999-1014 ◽  
Author(s):  
Stephen B. Cocks ◽  
Lin Tang ◽  
Pengfei Zhang ◽  
Alexander Ryzhkov ◽  
Brian Kaney ◽  
...  

Abstract The quantitative precipitation estimate (QPE) algorithm developed and described in Part I was validated using data collected from 33 Weather Surveillance Radar 1988-Doppler (WSR-88D) radars on 37 calendar days east of the Rocky Mountains. A key physical parameter to the algorithm is the parameter alpha α, defined as the ratio of specific attenuation A to specific differential phase KDP. Examination of a significant sample of tropical and continental precipitation events indicated that α was sensitive to changes in drop size distribution and exhibited lower (higher) values when there were lower (higher) concentrations of larger (smaller) rain drops. As part of the performance assessment, the prototype algorithm generated QPEs utilizing a real-time estimated and a fixed α were created and evaluated. The results clearly indicated ~26% lower errors and a 26% better bias ratio with the QPE utilizing a real-time estimated α as opposed to using a fixed value as was done in previous studies. Comparisons between the QPE utilizing a real-time estimated α and the operational dual-polarization (dual-pol) QPE used on the WSR-88D radar network showed the former exhibited ~22% lower errors, 7% less bias, and 5% higher correlation coefficient when compared to quality controlled gauge totals. The new QPE also provided much better estimates for moderate to heavy precipitation events and performed better in regions of partial beam blockage than the operational dual-pol QPE.


2019 ◽  
Vol 11 (12) ◽  
pp. 1436 ◽  
Author(s):  
Skripniková ◽  
Řezáčová

The comparative analysis of radar-based hail detection methods presented here, uses C-band polarimetric radar data from Czech territory for 5 stormy days in May and June 2016. The 27 hail events were selected from hail reports of the European Severe Weather Database (ESWD) along with 21 heavy rain events. The hail detection results compared in this study were obtained using a criterion, which is based on single-polarization radar data and a technique, which uses dual-polarization radar data. Both techniques successfully detected large hail events in a similar way and showed a strong agreement. The hail detection, as applied to heavy rain events, indicated a weak enhancement of the number of false detected hail pixels via the dual-polarization hydrometeor classification. We also examined the performance of hail size detection from radar data using both single- and dual-polarization methods. Both the methods recognized events with large hail but could not select the reported events with maximum hail size (diameter above 4 cm).


2012 ◽  
Vol 64 (1) ◽  
pp. 17224 ◽  
Author(s):  
Maria-Del-Mar Vich ◽  
Romualdo Romero ◽  
Evelyne Richard ◽  
Philippe Arbogast ◽  
Karine Maynard

Sign in / Sign up

Export Citation Format

Share Document