scholarly journals Synthesis of finely dispersed chromium diboride from nanofibrous carbon

2018 ◽  
Vol 61 (10) ◽  
pp. 800-806
Author(s):  
Yu. L. Krutskii ◽  
K. D. Dyukova ◽  
R. I. Kuz’min ◽  
O. V. Netskina ◽  
A. E. Iorkh

The paper presents experimental data on synthesis of finely  dispersed powder of chromium diboride. Chromium diboride was  prepared by reduction of chromium oxide Cr2O3 with nanofibrous  carbon (NFC) and boron carbide in the induction furnace under argon atmosphere. NFC is a product of catalytic decomposition of light  hydro carbons. The main characteristic of a NFC is high specific surface area (~150,000 m2/kg), which is significantly higher than that  of soot (~50,000  m2/kg). The content of impurities in NFC is about  1  wt  %. Boron carbide used as a reagent is characterized by high dispersity (at the level of ~2  μm) and insignificant content of impurities – no more than 1.5  wt  %. Based on analysis of state diagram of  the Cr – B system, composition of the charge and upper temperature  limit of diboride formation reaction were determined for obtaining  chromium diboride in powder state. According to the results of thermodynamic analysis, the temperature of beginning of reaction for  chromium oxide Cr2O3 reduction by carbon and boron carbide was  determined at various CO pressures. Composition and characteristics  of chromium diboride were studied using X-ray phase analysis, inductively coupled plasma atomic emission spectrometry (AES-ISP),  scanning electron microscopy using local energy-dispersive X-ray  microanalysis (EDX), low-temperature adsorption of nitrogen, followed by determination of specific surface area by BET method,  sedi mentation analysis, synchronous thermogravimetry and differential scanning calorimetry (TG/DSC). The material obtained at optimal parameters is represented by a single phase – chromium diboride  CrB2 . The content of impurities in chromium diboride does not exceed 2.5  wt  %. The powder particles were predominantly aggregated.  The average size of the particles and aggregates is equal to 7.95  μm  within a wide range of size distribution. The specific surface area of a  single-phase sample is 3600  m2/kg. Oxidation of chromium diboride  begins at a temperature of 430  °C and when the temperature reaches  1000  °C, the degree of oxidation is approximately 25  %. Optimum synthesis parameters are the ratio of reagents according to stoichiometry to obtain chromium diboride at a temperature of 1700  °C and  holding time of 20  min. It is shown that for this process nanofibrous  carbon is an effective reducing agent and that chromium oxide Cr2O3  is almost completely reduced to diboride CrB2 .

2019 ◽  
Vol 62 (2) ◽  
pp. 115-122
Author(s):  
Yu. L. Krutskii ◽  
K. D. Dyukova ◽  
R. I. Kuz′min ◽  
E. A. Maksimovskii ◽  
S. V. Veselov

The paper presents experimental data on synthesis of finely dispersed powder of chromium carbide Cr3C2 . Chromium carbide was prepared by reduction of chromium oxide Cr2O3with nanofibrous carbon (NFC) in induction furnace in argon atmosphere. NFC is a product of catalytic decomposition of light hydrocarbons. The main characteristic of NFC is high specific surface area (~150,000  m2/kg), which is significantly higher than that of carbon black (~50,000  m2/kg). Content of impurities in NFC is at the level of 1  wt  %. Based on analysis of state diagram of Cr – C system, composition of charge and the upper temperature limit of carbide formation reaction for obtaining chromium carbide in powder state are determined. Based on thermodynamic analysis, temperature of the onset of carbothermic reduction reaction of chromium oxide Cr2O3was determined at various CO pressures. Characteristics of chromium carbide were studied using X-ray diffraction analysis, pycnometric analysis, scanning electron microscopy using local energy dispersive X-ray microanalysis (EDX), lowtemperature nitrogen adsorption followed by determination of specific surface area by means of BET method, sedimentation analysis, synchronous thermogravimetry and differential scanning calorimetry (TG/DSC). The material obtained at optimal parameters is represented by a single phase – chromium carbide Cr3C2 . Powder particles were predominantly aggregated. Average size of particles and aggregates equaled 6.5  μm within a wide range of size distribution. Specific surface value of the obtained samples was 2200  m2/kg. Oxidation of chromium carbide began at temperature of ~640  °C and practically ends at ~1000  °C. Optimum parameters of synthesis are provided by ratio of reagents according to carbide of Cr3C2composition stoichiometry at temperature of 1300  °С and holding time of 20 minutes. It is shown that for this process nanofibrous carbon is an effective reducing agent and that chromium oxide Cr2O3is almost completely reduced to carbide Cr3C2 .


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3938
Author(s):  
Magdalena Likus ◽  
Małgorzata Komorowska-Kaufman ◽  
Alina Pruss ◽  
Łukasz Zych ◽  
Tomasz Bajda

Groundwater treatment residuals (GWTRs) are safe waste materials generated during drinking water treatment. GWTRs are mainly deposited in landfills, but the preferred solution should be reused or utilized for some components. To ensure proper sludge management, it is important to provide quality, chemical composition, and texture characteristics of GWTRs. Therefore, in this study, we aimed to investigate and compare the features of GWTRs collected from four water treatment plants. GWTRs were characterized by X-ray diffraction (XRD); scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS); Fourier transform infrared spectroscopy (FTIR); thermogravimetric, differential thermogravimetric, and differential thermal analysis (TG, DTG, and DTA, respectively); X-ray fluorescence (XRF); inductively coupled plasma optical emission spectrometry (ICP-OEP); specific surface area (SBET) measurement; and determination of the isoelectric point (pHIEP). According to the results, GWTRs are poor crystalline materials that are predominantly composed of ferrihydrite with minor calcite and quartz admixture. They formed heterogeneously mixed particles with irregular shapes. They were mainly composed of iron oxides (32–55%), silica (4–28%), calcium oxide (4–17%), and manganese oxides (0.3–4.0%). They were found to be mesoporous with a large specific surface area. Due to their composition and texture characteristics, GWTRs demonstrate good adsorption properties toward different compounds such as heavy metals and metalloids.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1230
Author(s):  
Fabien Léonard ◽  
Zhen Zhang ◽  
Holger Krebs ◽  
Giovanni Bruno

The mixture of ammonium nitrate (AN) prills and fuel oil (FO), usually referred to as ANFO, is extensively used in the mining industry as a bulk explosive. One of the major performance predictors of ANFO mixtures is the fuel oil retention, which is itself governed by the complex pore structure of the AN prills. In this study, we present how X-ray computed tomography (XCT), and the associated advanced data processing workflow, can be used to fully characterise the structure and morphology of AN prills. We show that structural parameters such as volume fraction of the different phases and morphological parameters such as specific surface area and shape factor can be reliably extracted from the XCT data, and that there is a good agreement with the measured oil retention values. Importantly, oil retention measurements (qualifying the efficiency of ANFO as explosives) correlate well with the specific surface area determined by XCT. XCT can therefore be employed non-destructively; it can accurately evaluate and characterise porosity in ammonium nitrate prills, and even predict their efficiency.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1067 ◽  
Author(s):  
Vyacheslav V. Rodaev ◽  
Svetlana S. Razlivalova ◽  
Andrey O. Zhigachev ◽  
Vladimir M. Vasyukov ◽  
Yuri I. Golovin

For the first time, zirconia nanofibers with an average diameter of about 75 nm have been fabricated by calcination of electrospun zirconium acetylacetonate/polyacrylonitrile fibers in the range of 500–1100 °C. Composite and ceramic filaments have been characterized by scanning electron microscopy, thermogravimetric analysis, nitrogen adsorption analysis, energy-dispersive X-ray spectroscopy, and X-ray diffractometry. The stages of the transition of zirconium acetylacetonate to zirconia have been revealed. It has been found out that a rise in calcination temperature from 500 to 1100 °C induces transformation of mesoporous tetragonal zirconia nanofibers with a high specific surface area (102.3 m2/g) to non-porous monoclinic zirconia nanofibers of almost the same diameter with a low value of specific surface area (8.3 m2/g). The tetragonal zirconia nanofibers with high specific surface area prepared at 500 °C can be considered, for instance, as promising supports for heterogeneous catalysts, enhancing their activity.


2011 ◽  
Vol 403-408 ◽  
pp. 1205-1210
Author(s):  
Jaleh Babak ◽  
Ashrafi Ghazaleh ◽  
Gholami Nasim ◽  
Azizian Saeid ◽  
Golbedaghi Reza ◽  
...  

In this work ZnO nanocrystal powders have been synthesized by using Zinc acetate dehydrate as a precursor and sol-gel method. Then the products have been annealed at temperature of 200-1050°C, for 2 hours. The powders were characterized using X-ray diffraction (XRD), UV-vis absorption and photoluminescence (PL) spectroscopy. The morphology of refrence ZnO nanoparticles have been studied using Transmission Electron Microscope (TEM). During the annealing process, increase in nanocrystal size, defects and energy gap quantitative, and decrease in specific surface area have been observed.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2527
Author(s):  
Tingting Niu ◽  
Bin Zhou ◽  
Zehui Zhang ◽  
Xiujie Ji ◽  
Jianming Yang ◽  
...  

Resorcinol-formaldehyde/titanium dioxide composite (RF/TiO2) gel was prepared simultaneously by acid catalysis and then dried to aerogel with supercritical fluid CO2. The carbon/titanium dioxide aerogel was obtained by carbonization and then converted to nanoporous titanium carbide/carbon composite aerogel via 800 °C magnesiothermic catalysis. Meanwhile, the evolution of the samples in different stages was characterized by X-ray diffraction (XRD), an energy-dispersive X-ray (EDX) spectrometer, a scanning electron microscope (SEM), a transmission electron microscope (TEM) and specific surface area analysis (BET). The results showed that the final product was nanoporous TiC/C composite aerogel with a low apparent density of 339.5 mg/cm3 and a high specific surface area of 459.5 m2/g. Comparing to C aerogel, it could also be considered as one type of highly potential material with efficient photothermal conversion. The idea of converting oxide–carbon composite into titanium carbide via the confining template and low-temperature magnesiothermic catalysis may provide new sight to the synthesis of novel nanoscale carbide materials.


NANO ◽  
2020 ◽  
Vol 15 (06) ◽  
pp. 2050079
Author(s):  
Xuelei Li ◽  
Jinfeng Bai ◽  
Jiaqi Li ◽  
Chao Li ◽  
Junru Zhang ◽  
...  

In this study, nitrogen-deficient graphitic carbon nitride (M-LS-g-C3N4) with a mesoporous structure and a large specific surface area was obtained by calcination after melt pretreatment using urea as a precursor. X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption, X-ray photoelectron spectroscopy (XPS), UV-Vis, ESR and photoluminescence (PL) were used to characterize the structure, morphology and optical performance of the samples. The TEM results showed the formation of a mesoporous structure on the 0.1[Formula: see text]M-LS-g-C3N4 surface. The porous structure led to an increase in the specific surface area from 41.5[Formula: see text]m2/g to 124.3[Formula: see text]m2/g. The UV-Vis results showed that nitrogen vacancies generated during the modification process reduced the band gap of g-C3N4 and improved the visible light absorption. The PL spectra showed that the nitrogen defects promoted the separation of photogenerated electron–hole pairs. In the visible light degradation of methyl orange (MO), the reaction rate constant of 0.1[Formula: see text]M-LS-g-C3N4 reached 0.0086[Formula: see text][Formula: see text], which was 5.05 times that of pure g-C3N4. Superoxide radicals and photogenerated holes were found to be the main active species in the reaction system. This study provides an efficient, green and convenient means of preparing graphitic carbon nitride with a large specific surface area.


NANO ◽  
2019 ◽  
Vol 14 (07) ◽  
pp. 1950080
Author(s):  
Hao Hu ◽  
Xiaogang Sun ◽  
Wei Chen ◽  
Jie Wang ◽  
Xu Li ◽  
...  

Carbon nanotubes (CNTs) were doped by ammonium borate as the sources of nitrogen and boron. Under the protection of Ar gas, boron-nitrogen doped CNTs were prepared through nitriding and boronization at high temperature. It is a conductive additive. Then, the obtained CNTs were mixed with activated carbon (AC), SP, sodium dodecyl sulfate (SDS), and cellulose fiber to prepare electrodes. With all the materials, a symmetric electric double-layer supercapacitor (EDLC) was assembled. Next, the materials and electrodes were also characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The factors, chemical connections, and specific surface area of the CNTs were analyzed by X-ray energy spectrum analysis (EDS), X-ray photoelectron spectroscopy (XPS), as well as a specific surface area and porosimetry analyzer (BET). In addition, the electrochemical performances of electric double-layer capacitors were tested with the help of cyclic voltammetry, constant-current charging and discharging, and so on. From the results, we can make a conclusion, that is, both B and N atoms were added into the CNTs and formed bonds successfully with carbon atoms mutually. Besides, the specific surface area is about 1.5 times than that of the CNT. When the charge/discharge current density reaches 50[Formula: see text]mA/g, we can find that the mass specific capacitance of the capacitor can run up to 32.19[Formula: see text]F/g. Also, we observe that the maximum power density is close to 220[Formula: see text]W/kg (700[Formula: see text]mA/g), and the energy density can arrive 9.31[Formula: see text]Wh/kg (50[Formula: see text]mA/g). Based on the impedance test, the electrodes are characterized with low impedance. After 2000 cycles, the boron-nitrogen doped double-layer capacitors maintain a capacitance retention ratio of above 95%. Its power density can still achieve 220[Formula: see text]W/kg when the energy density keeps at 3.46[Formula: see text]Wh/kg. In other words, the electrochemical performance functions of the electric double-layer capacitors are enhanced while the CNTs serve as the electrodes.


2012 ◽  
Vol 625 ◽  
pp. 243-246
Author(s):  
Shu Hua Geng ◽  
Wei Zhong Ding ◽  
Shu Qiang Guo ◽  
Xiong Gang Lu

Iron ore reduction and carbon deposition in pure CO was investigated by using thermogravimetric (TG) method over the temperature range of 0-1200°C. The results of the work may be summarized as follows: in CO stream, carbon deposition occurred below 900°C, no carbon deposition was found above 1000°C. X-Ray analysis of the reacted sample indicated that the carbon deposition occurred with the iron was reduced. The iron reduction process and carbon deposition occurred simultaneously. The rate of carbon deposition changed with the transformation of iron oxides. The specific surface area and pore structure of reduced samples were analyzed. The specific surface area changed with the amount of carbon deposition.


2014 ◽  
Vol 47 (1) ◽  
pp. 316-324 ◽  
Author(s):  
Prune Steins ◽  
Arnaud Poulesquen ◽  
Fabien Frizon ◽  
Olivier Diat ◽  
Jacques Jestin ◽  
...  

Nitrogen sorption and small- and wide-angle X-ray and neutron scattering techniques were used to study the porous structure of geopolymers, inorganic polymers synthesized by reaction of a strongly alkaline solution and an aluminosilicate source (metakaolin). The effects of aging and the use of alkali activators (Na+, K+) of different sizes were investigated at room temperature. The influence of aging time on the microstructure of both geopolymer matrixes was verified in terms of pore volume and specific surface area. The results suggested a refinement of the porosity and therefore a reduction in the pore volume over time. Regardless of the age considered, some characteristics of the porous network such as pore size, shape and distribution depend on the alkali activator used. Whatever the technique considered, the potassium geopolymer has a greater specific surface area than the sodium geopolymer. According to the scattering results, the refinement of the porosity can be associated with, first, a densification of the solid network and, secondly, a partial closure of the porosity at the nanometre scale. The kinetics are much slower for the sodium geopolymer than for the potassium geopolymer in the six months of observation.


Sign in / Sign up

Export Citation Format

Share Document