scholarly journals USE OF CARBON MATERIAL WITH DEVELOPED SURFACE FOR SYNTHESIS OF HIGHER CHROMIUM CARBIDE

2019 ◽  
Vol 62 (2) ◽  
pp. 115-122
Author(s):  
Yu. L. Krutskii ◽  
K. D. Dyukova ◽  
R. I. Kuz′min ◽  
E. A. Maksimovskii ◽  
S. V. Veselov

The paper presents experimental data on synthesis of finely dispersed powder of chromium carbide Cr3C2 . Chromium carbide was prepared by reduction of chromium oxide Cr2O3with nanofibrous carbon (NFC) in induction furnace in argon atmosphere. NFC is a product of catalytic decomposition of light hydrocarbons. The main characteristic of NFC is high specific surface area (~150,000  m2/kg), which is significantly higher than that of carbon black (~50,000  m2/kg). Content of impurities in NFC is at the level of 1  wt  %. Based on analysis of state diagram of Cr – C system, composition of charge and the upper temperature limit of carbide formation reaction for obtaining chromium carbide in powder state are determined. Based on thermodynamic analysis, temperature of the onset of carbothermic reduction reaction of chromium oxide Cr2O3was determined at various CO pressures. Characteristics of chromium carbide were studied using X-ray diffraction analysis, pycnometric analysis, scanning electron microscopy using local energy dispersive X-ray microanalysis (EDX), lowtemperature nitrogen adsorption followed by determination of specific surface area by means of BET method, sedimentation analysis, synchronous thermogravimetry and differential scanning calorimetry (TG/DSC). The material obtained at optimal parameters is represented by a single phase – chromium carbide Cr3C2 . Powder particles were predominantly aggregated. Average size of particles and aggregates equaled 6.5  μm within a wide range of size distribution. Specific surface value of the obtained samples was 2200  m2/kg. Oxidation of chromium carbide began at temperature of ~640  °C and practically ends at ~1000  °C. Optimum parameters of synthesis are provided by ratio of reagents according to carbide of Cr3C2composition stoichiometry at temperature of 1300  °С and holding time of 20 minutes. It is shown that for this process nanofibrous carbon is an effective reducing agent and that chromium oxide Cr2O3is almost completely reduced to carbide Cr3C2 .

2018 ◽  
Vol 61 (10) ◽  
pp. 800-806
Author(s):  
Yu. L. Krutskii ◽  
K. D. Dyukova ◽  
R. I. Kuz’min ◽  
O. V. Netskina ◽  
A. E. Iorkh

The paper presents experimental data on synthesis of finely  dispersed powder of chromium diboride. Chromium diboride was  prepared by reduction of chromium oxide Cr2O3 with nanofibrous  carbon (NFC) and boron carbide in the induction furnace under argon atmosphere. NFC is a product of catalytic decomposition of light  hydro carbons. The main characteristic of a NFC is high specific surface area (~150,000 m2/kg), which is significantly higher than that  of soot (~50,000  m2/kg). The content of impurities in NFC is about  1  wt  %. Boron carbide used as a reagent is characterized by high dispersity (at the level of ~2  μm) and insignificant content of impurities – no more than 1.5  wt  %. Based on analysis of state diagram of  the Cr – B system, composition of the charge and upper temperature  limit of diboride formation reaction were determined for obtaining  chromium diboride in powder state. According to the results of thermodynamic analysis, the temperature of beginning of reaction for  chromium oxide Cr2O3 reduction by carbon and boron carbide was  determined at various CO pressures. Composition and characteristics  of chromium diboride were studied using X-ray phase analysis, inductively coupled plasma atomic emission spectrometry (AES-ISP),  scanning electron microscopy using local energy-dispersive X-ray  microanalysis (EDX), low-temperature adsorption of nitrogen, followed by determination of specific surface area by BET method,  sedi mentation analysis, synchronous thermogravimetry and differential scanning calorimetry (TG/DSC). The material obtained at optimal parameters is represented by a single phase – chromium diboride  CrB2 . The content of impurities in chromium diboride does not exceed 2.5  wt  %. The powder particles were predominantly aggregated.  The average size of the particles and aggregates is equal to 7.95  μm  within a wide range of size distribution. The specific surface area of a  single-phase sample is 3600  m2/kg. Oxidation of chromium diboride  begins at a temperature of 430  °C and when the temperature reaches  1000  °C, the degree of oxidation is approximately 25  %. Optimum synthesis parameters are the ratio of reagents according to stoichiometry to obtain chromium diboride at a temperature of 1700  °C and  holding time of 20  min. It is shown that for this process nanofibrous  carbon is an effective reducing agent and that chromium oxide Cr2O3  is almost completely reduced to diboride CrB2 .


2016 ◽  
Vol 18 (2) ◽  
pp. 141 ◽  
Author(s):  
A.A. Atchabarova ◽  
R.R. Tokpayev ◽  
A.T. Kabulov ◽  
S.V. Nechipurenko ◽  
R.A. Nurmanova ◽  
...  

<p>Electrode materials were prepared from activated carbonizates of walnut shell, apricot pits and shungite rock from “Bakyrchik” deposit, East Kazakhstan. Physicochemical characteristics of the obtained samples were studied by the Brunauer-Emett-Taylor method, scanning electron microscopy, Raman spectroscopy and other methods. Electrochemical properties of the obtained materials were studied by the method of cyclic voltammetry. It was found that the samples have an amorphous structure. Samples based on plant raw materials after hydrothermal carbonization at 240 °С during 24 h, have more homogeneous and developed surface. Specific surface area of carbon containing materials based on apricot pits is 1300 m<sup>2</sup>/g, for those on the based on mineral raw material, it is 153 m<sup>2</sup>/g. It was shown that materials after hydrothermal carbonization can be used for catalytic purposes and electrodes after thermal carbonization for analytical and electrocatalytic purposes. Electrode obtained by HTC have electrocatalytic activity. CSC 240 has high background current (slope i/Е is 43 mА V<sup>–1</sup> cm<sup>–2</sup>), low potential of the hydrogen electroreduction (more positive by ~ 0.5 V than samples based on plant raw materials). The reaction of DA determination is more pronounced on the electrodes obtained by HTC 240 °C, 24 h, due to the nature, carbon structure and high specific surface area of obtained samples.</p>


2021 ◽  
Vol 1017 ◽  
pp. 11-20
Author(s):  
Evgeny A. Shoshin ◽  
Valeria V. Strokova ◽  
Zheng Mao Ye

Silicate micro- and nano-additives are multifunctional in relation to cement systems. Their application can solve a wide range of technological problems while maintaining the economic efficiency of technical solutions. The effect of silicate additives and fillers is determined by their level of dispersion, due to which the technologies for producing nano- and submicro-sized dispersed materials are being developed. The combination of mechanochemical synthesis of modified calcium hydrosilicates with subsequent thermolysis makes it possible to produce calcium silicate dispersions (SCD), which differ in polymodality of the fractional composition including submicro (10–7–10–6 m) and microdimensional (≥10–6 m) modes. The main element of the technology is the use of modifying carbohydrate, which acts as a stabilizer of hydrated phases of silicates. A comparative study of SCD produced using sucrose (sSCD) and lactose (lSCD) revealed the effect of these carbohydrates on the properties of sSCD and lSCD, as well as their effectiveness as a component of cementitious composite binder. It was found that the level of adsorption of modifying carbohydrate determines the physical properties of SCD (granulometry, specific surface area). The relatively high residual content of free sucrose (0.24%) in the composition of sSCD prevents the consolidation of silicates nanoparticles formed during the thermolysis, causes a high content of submicro sized fractions and a high specific surface area with sSCD (26.3 ± 0.7 m2/g). Lactose is absorbed by the silicate phase; the residual content of free lactose does not exceed 0.028% of lSCD. The low content of stabilizing carbohydrate contributes to the development of nanoparticle consolidation, a decrease in the specific surface area of lSCD to 13.0 ± 0.2 m2/g and content of submicrosized fractions. The residual content of free carbohydrates and particle size characteristics of sSCD and lSCD determine the nature of their influence on Cement-SCD-based concrete setting and hardening. The presence of residual sucrose in the composition of sSCD and fine fractions determines the competitive nature of the processes of retardation of hardening and acceleration of hardening of the cement system due to the nucleation effect, as a result of which the curve of the setting time is extreme. In addition, the inhibitory effect of sucrose reduces the strength of concrete on the 7th day. By the 28th day, the inhibitory effect of sucrose has been overcome, and concrete samples demonstrate an 18% increase in compressive strength with a sSCD content of 30%. The low content of residual free lactose in the composition of lSCD causes the nucleation effect. As a result, there is a monotonous reduction in the setting time of concrete mix with an increase in the content of lSCD in the composition of HF, as well as a significant increase in concrete strength (up to 127%) on the 7th day. At the same time, on the 28th day the strength of concrete increases slightly


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1230
Author(s):  
Fabien Léonard ◽  
Zhen Zhang ◽  
Holger Krebs ◽  
Giovanni Bruno

The mixture of ammonium nitrate (AN) prills and fuel oil (FO), usually referred to as ANFO, is extensively used in the mining industry as a bulk explosive. One of the major performance predictors of ANFO mixtures is the fuel oil retention, which is itself governed by the complex pore structure of the AN prills. In this study, we present how X-ray computed tomography (XCT), and the associated advanced data processing workflow, can be used to fully characterise the structure and morphology of AN prills. We show that structural parameters such as volume fraction of the different phases and morphological parameters such as specific surface area and shape factor can be reliably extracted from the XCT data, and that there is a good agreement with the measured oil retention values. Importantly, oil retention measurements (qualifying the efficiency of ANFO as explosives) correlate well with the specific surface area determined by XCT. XCT can therefore be employed non-destructively; it can accurately evaluate and characterise porosity in ammonium nitrate prills, and even predict their efficiency.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1067 ◽  
Author(s):  
Vyacheslav V. Rodaev ◽  
Svetlana S. Razlivalova ◽  
Andrey O. Zhigachev ◽  
Vladimir M. Vasyukov ◽  
Yuri I. Golovin

For the first time, zirconia nanofibers with an average diameter of about 75 nm have been fabricated by calcination of electrospun zirconium acetylacetonate/polyacrylonitrile fibers in the range of 500–1100 °C. Composite and ceramic filaments have been characterized by scanning electron microscopy, thermogravimetric analysis, nitrogen adsorption analysis, energy-dispersive X-ray spectroscopy, and X-ray diffractometry. The stages of the transition of zirconium acetylacetonate to zirconia have been revealed. It has been found out that a rise in calcination temperature from 500 to 1100 °C induces transformation of mesoporous tetragonal zirconia nanofibers with a high specific surface area (102.3 m2/g) to non-porous monoclinic zirconia nanofibers of almost the same diameter with a low value of specific surface area (8.3 m2/g). The tetragonal zirconia nanofibers with high specific surface area prepared at 500 °C can be considered, for instance, as promising supports for heterogeneous catalysts, enhancing their activity.


2012 ◽  
Vol 6 (5) ◽  
pp. 939-951 ◽  
Author(s):  
N. Calonne ◽  
C. Geindreau ◽  
F. Flin ◽  
S. Morin ◽  
B. Lesaffre ◽  
...  

Abstract. We used three-dimensional (3-D) images of snow microstructure to carry out numerical estimations of the full tensor of the intrinsic permeability of snow (K). This study was performed on 35 snow samples, spanning a wide range of seasonal snow types. For several snow samples, a significant anisotropy of permeability was detected and is consistent with that observed for the effective thermal conductivity obtained from the same samples. The anisotropy coefficient, defined as the ratio of the vertical over the horizontal components of K, ranges from 0.74 for a sample of decomposing precipitation particles collected in the field to 1.66 for a depth hoar specimen. Because the permeability is related to a characteristic length, we introduced a dimensionless tensor K*=K/res2, where the equivalent sphere radius of ice grains (res) is computed from the specific surface area of snow (SSA) and the ice density (ρi) as follows: res=3/(SSA×ρi. We define K and K* as the average of the diagonal components of K and K*, respectively. The 35 values of K* were fitted to snow density (ρs) and provide the following regression: K = (3.0 &amp;pm; 0.3) res2 exp((−0.0130 &amp;pm; 0.0003)ρs). We noted that the anisotropy of permeability does not affect significantly the proposed equation. This regression curve was applied to several independent datasets from the literature and compared to other existing regression curves or analytical models. The results show that it is probably the best currently available simple relationship linking the average value of permeability, K, to snow density and specific surface area.


2011 ◽  
Vol 403-408 ◽  
pp. 1205-1210
Author(s):  
Jaleh Babak ◽  
Ashrafi Ghazaleh ◽  
Gholami Nasim ◽  
Azizian Saeid ◽  
Golbedaghi Reza ◽  
...  

In this work ZnO nanocrystal powders have been synthesized by using Zinc acetate dehydrate as a precursor and sol-gel method. Then the products have been annealed at temperature of 200-1050°C, for 2 hours. The powders were characterized using X-ray diffraction (XRD), UV-vis absorption and photoluminescence (PL) spectroscopy. The morphology of refrence ZnO nanoparticles have been studied using Transmission Electron Microscope (TEM). During the annealing process, increase in nanocrystal size, defects and energy gap quantitative, and decrease in specific surface area have been observed.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2527
Author(s):  
Tingting Niu ◽  
Bin Zhou ◽  
Zehui Zhang ◽  
Xiujie Ji ◽  
Jianming Yang ◽  
...  

Resorcinol-formaldehyde/titanium dioxide composite (RF/TiO2) gel was prepared simultaneously by acid catalysis and then dried to aerogel with supercritical fluid CO2. The carbon/titanium dioxide aerogel was obtained by carbonization and then converted to nanoporous titanium carbide/carbon composite aerogel via 800 °C magnesiothermic catalysis. Meanwhile, the evolution of the samples in different stages was characterized by X-ray diffraction (XRD), an energy-dispersive X-ray (EDX) spectrometer, a scanning electron microscope (SEM), a transmission electron microscope (TEM) and specific surface area analysis (BET). The results showed that the final product was nanoporous TiC/C composite aerogel with a low apparent density of 339.5 mg/cm3 and a high specific surface area of 459.5 m2/g. Comparing to C aerogel, it could also be considered as one type of highly potential material with efficient photothermal conversion. The idea of converting oxide–carbon composite into titanium carbide via the confining template and low-temperature magnesiothermic catalysis may provide new sight to the synthesis of novel nanoscale carbide materials.


NANO ◽  
2020 ◽  
Vol 15 (06) ◽  
pp. 2050079
Author(s):  
Xuelei Li ◽  
Jinfeng Bai ◽  
Jiaqi Li ◽  
Chao Li ◽  
Junru Zhang ◽  
...  

In this study, nitrogen-deficient graphitic carbon nitride (M-LS-g-C3N4) with a mesoporous structure and a large specific surface area was obtained by calcination after melt pretreatment using urea as a precursor. X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption, X-ray photoelectron spectroscopy (XPS), UV-Vis, ESR and photoluminescence (PL) were used to characterize the structure, morphology and optical performance of the samples. The TEM results showed the formation of a mesoporous structure on the 0.1[Formula: see text]M-LS-g-C3N4 surface. The porous structure led to an increase in the specific surface area from 41.5[Formula: see text]m2/g to 124.3[Formula: see text]m2/g. The UV-Vis results showed that nitrogen vacancies generated during the modification process reduced the band gap of g-C3N4 and improved the visible light absorption. The PL spectra showed that the nitrogen defects promoted the separation of photogenerated electron–hole pairs. In the visible light degradation of methyl orange (MO), the reaction rate constant of 0.1[Formula: see text]M-LS-g-C3N4 reached 0.0086[Formula: see text][Formula: see text], which was 5.05 times that of pure g-C3N4. Superoxide radicals and photogenerated holes were found to be the main active species in the reaction system. This study provides an efficient, green and convenient means of preparing graphitic carbon nitride with a large specific surface area.


NANO ◽  
2019 ◽  
Vol 14 (07) ◽  
pp. 1950080
Author(s):  
Hao Hu ◽  
Xiaogang Sun ◽  
Wei Chen ◽  
Jie Wang ◽  
Xu Li ◽  
...  

Carbon nanotubes (CNTs) were doped by ammonium borate as the sources of nitrogen and boron. Under the protection of Ar gas, boron-nitrogen doped CNTs were prepared through nitriding and boronization at high temperature. It is a conductive additive. Then, the obtained CNTs were mixed with activated carbon (AC), SP, sodium dodecyl sulfate (SDS), and cellulose fiber to prepare electrodes. With all the materials, a symmetric electric double-layer supercapacitor (EDLC) was assembled. Next, the materials and electrodes were also characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The factors, chemical connections, and specific surface area of the CNTs were analyzed by X-ray energy spectrum analysis (EDS), X-ray photoelectron spectroscopy (XPS), as well as a specific surface area and porosimetry analyzer (BET). In addition, the electrochemical performances of electric double-layer capacitors were tested with the help of cyclic voltammetry, constant-current charging and discharging, and so on. From the results, we can make a conclusion, that is, both B and N atoms were added into the CNTs and formed bonds successfully with carbon atoms mutually. Besides, the specific surface area is about 1.5 times than that of the CNT. When the charge/discharge current density reaches 50[Formula: see text]mA/g, we can find that the mass specific capacitance of the capacitor can run up to 32.19[Formula: see text]F/g. Also, we observe that the maximum power density is close to 220[Formula: see text]W/kg (700[Formula: see text]mA/g), and the energy density can arrive 9.31[Formula: see text]Wh/kg (50[Formula: see text]mA/g). Based on the impedance test, the electrodes are characterized with low impedance. After 2000 cycles, the boron-nitrogen doped double-layer capacitors maintain a capacitance retention ratio of above 95%. Its power density can still achieve 220[Formula: see text]W/kg when the energy density keeps at 3.46[Formula: see text]Wh/kg. In other words, the electrochemical performance functions of the electric double-layer capacitors are enhanced while the CNTs serve as the electrodes.


Sign in / Sign up

Export Citation Format

Share Document