Overview of Solutions and Design Methods for Linear Electric Generators with Permanent Magnets

Author(s):  
Andrey Kramarov ◽  
◽  
Aleksandr Pavlenko ◽  
Denis Batishchev ◽  
Igor Trocenko ◽  
...  

An overview of methods for calculating and designing linear electric generators with permanent magnets is given. The techniques are grouped according to the type of calculation approach used. A detailed analysis of the proposed methods and assumptions is carried out, conclusions are drawn about the possibility of their use in the design of electric generators with permanent magnets with solid magnetic circuit elements. The main assumptions are related to the representation of the parameters of the equivalent circuits of magnetic systems. It was found that the main part of the methods does not take into account the influence of magnetic hysteresis and eddy currents in solid elements of the magnetic circuit. It is shown that many approaches aimed at designing electric machines with permanent magnets can be adapted to linear electric generators.

2019 ◽  
Vol 84 ◽  
pp. 02009 ◽  
Author(s):  
Andrzej Popenda ◽  
Sławomir Chwalba

In the paper a synchronous generator based on a hybrid excitation, including permanent magnets and field coil, is studied. The structures of rotor magnetic circuit allowing one to expand the range of generator voltage adjustment are explained and compared with the standard hybrid rotor. The structures are described mathematically and their equivalent circuits are given. The results of theoretical analysis and experimental test are presented.


2020 ◽  
Vol 20 (3) ◽  
pp. 119-131

The article is devoted to the search and research of ways to optimize magnetic systems of contactless synchronous generators with a capacity of 30–50 kVA used in Autonomous power supply systems for ground-based mobile objects. The main atten-tion is paid to electric generators with a combined excitation system, the air gap magnetic flux of which is created by the combined action of permanent magnets of the main inductor and an electromagnetic adjustment link necessary to maintain the constancy of the output voltage when the rotor speed and generator load change. Ac-cording to the authors, with an increase in the power of the source over 30–35 kVA, DC machines will be replaced by generators of this type. The article also describes a machine with a fundamentally new magnetic system, which contains elements of the design of electric machines with radial and axial flux. The proposed magnetic system, according to the authors, allows us to fully utilize the potential inherent in machines of both forms, improve the specific characteristics and, most importantly, maintain the highest technical reliability inherent in contactless Electrical Machines.


Author(s):  
A. B. Menzhinski ◽  
A. N. Malashin ◽  
A. E. Kaleda

A method for the parametric analysis of electric generators of reciprocating motion with permanent magnets has been developed, which allows revealing the values of the parameters of the magnetic circuit (cross-sectional area) and the working winding (number of turns) at a given value of the efficiency, providing a minimum specific gravity of the generator. The method of parametric analysis of electric generators of reciprocating motion with permanent magnets consists of three stages. The first and second stages are the electromagnetic calculation of the generator: at the first stage, the main geometric dimensions of the magnetic system and the parameters of the working winding of the generator are determined; at the second stage, the verification of the electromagnetic calculation of the generator, calculation of the nominal mode, calculation of the efficiency and assessment of the thermal state of the generator are fulfilled. At the third stage, a parametric analysis of electric generators of reciprocating motion with permanent magnets with specified constraints is carried out, as well as the refinement of the geometric dimensions and configuration of the magnetic system of the generator using a two-dimensional finite element model of the magnetic field. As a result, to ensure better use of the electrical steel of the magnetic circuit of the generator and thereby reduce its mass, the most saturated areas and areas, which are characterized by low values of the magnetic field strength, are determined. Distinctive features of the proposed technique are: the use of a minimum specific gravity of electric generators of reciprocating motion with longitudinal, transverse or combined changes in the magnetic flux passing through the working winding as an objective function; combined approach to electromagnetic calculation; taking into account the influence of the operating temperature on the parameters of the permanent magnet, as well as overheating of individual parts of the generator.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Pengfei Guo ◽  
Jing Xie ◽  
Xinchun Guan

As a key to understand dynamic performances of MR dampers, a comprehensive dynamic magnetic circuit model is proposed in this work on the basis of Ampere’s and Gauss’s laws. It takes into account not only the magnetic saturation, which many existing studies have focused on, but also the magnetic hysteresis and eddy currents in a MR damper. The hysteresis of steel parts of MR dampers is described by Jiles-Atherton (J-A) models, and the eddy current is included based on the field separation. Compared with the FEM results, the proposed model is validated in low- and high-frequency studies for the predictions of the magnetic saturation, the hysteresis, and the effect of eddy currents. A simple multiphysics model is developed to demonstrate how to combine the proposed magnetic circuit model with the commonly used Bingham fluid model. The damping force in the high-frequency case obviously lags behind the coil current, which exhibits a hysteresis loop in the current-force plane. The lag of damping force even exists in a low-frequency varying magnetic field and becomes more severe in the presence of eddy currents.


Author(s):  
I. N. Belezyakov ◽  
K. G. Arakancev

At present time there is a need to develop a methodology for electric motors design which will ensure the optimality of their geometrical parameters according to one or a set of criterias. With the growth of computer calculating power it becomes possible to develop methods based on numerical methods for electric machines computing. The article describes method of a singlecriterion evolutionary optimization of synchronous electric machines with permanent magnets taking into account the given restrictions on the overall dimensions and characteristics of structural materials. The described approach is based on applying of a genetic algorithm for carrying out evolutionary optimization of geometric parameters of a given configuration of electric motor. Optimization criteria may be different, but in automatic control systems high requirements are imposed to electromagnetic torque electric machine produces. During genetic algorithm work it optimizes given geometric parameters of the electric motor according to the criterion of its torque value, which is being calculated using finite element method.


2020 ◽  
pp. 7-10
Author(s):  
A.Ya. Krasil'nikov ◽  
A.A. Krasilnikov ◽  
D.V. Taranov

The possibility of applying the standard calculation of the shear force of thin high-coercive neodymium— iron—boron permanent magnets in magnetic systems and magnetic couplings is considered. A correction factor is proposed for calculating the shear force in systems with thin magnets, which allows at the stage of developing sealed equipment to calculate the shear force of permanent magnets in these systems. Keywords: magnetic system, magnetic coupling, permanent magnet, shear force. [email protected]


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1278
Author(s):  
Alina Daniela Crisan ◽  
Aurel Leca ◽  
Dan Pantelica ◽  
Ioan Dan ◽  
Ovidiu Crisan

Magnetic nanoscale materials exhibiting the L10 tetragonal phase such as FePt or ternary alloys derived from FePt show most promising magnetic properties as a novel class of rare earth free permanent magnets with high operating temperature. A granular alloy derived from binary FePt with low Pt content and the addition of Mn with the nominal composition Fe57Mn8Pt35 has been synthesized in the shape of melt-spun ribbons and subsequently annealed at 600 °C and 700 °C for promoting the formation of single phase, L10 tetragonal, hard magnetic phase. Proton-induced X-ray emission spectroscopy PIXE has been utilized for checking the compositional effect of Mn addition. Structural properties were analyzed using X-ray diffraction and diffractograms were analyzed using full profile Rietveld-type analysis with MAUD (Materials Analysis Using Diffraction) software. By using temperature-dependent synchrotron X-ray diffraction, the disorder–order phase transformation and the stability of the hard magnetic L10 phase were monitored over a large temperature range (50–800 °C). A large interval of structural stability of the L10 phase was observed and this stability was interpreted in terms of higher ordering of the L10 phase promoted by the Mn addition. It was moreover found that both crystal growth and unit cell expansion are inhibited, up to the highest temperature investigated (800 °C), proving thus that the Mn addition stabilizes the formed L10 structure further. Magnetic hysteresis loops confirmed structural data, revealing a strong coercive field for a sample wherein single phase, hard, magnetic tetragonal L10 exists. These findings open good perspectives for use as nanocomposite, rare earth free magnets, working in extreme operation conditions.


2018 ◽  
Vol 67 (3) ◽  
pp. 71-81
Author(s):  
Krzysztof Just ◽  
Paweł Piskur

In this paper, the static characteristics as a function of changes in geometric dimensions of the stator magnetic circuit of the linear stepper actuator with permanent magnets is presented. The stator is built from a series of cylindrical coils encapsulated with ferromagnetic case. The runner is made of permanent magnet rings connected with ferromagnetic spacers. The electromagnetic interac-tion between the stator and the runner for the sequential supply of coils was analyzed. The electro-magnetic force as a function of the geometry of the coils and the ferromagnetic housing for the con-stant graduation of the runner was determined. The maximum, minimum, and average values of the electromagnetic force as a function of the geometric independent variable were determined. The ratio of the mean force to the maximum, and mechanical work calculated as the integral of the force on the path of the runner was adopted as the evaluation criteria. A comparison between the maximum, average and relative values of forces as a function of the geometric dimensions of the stator was made. Keywords: modelling and simulation, linear actuator, finite element method, field calculations, cogging force, magnetic force.


2019 ◽  
Vol 15 (1) ◽  
pp. 21-27
Author(s):  
E. A. Volegova ◽  
T. I. Maslova ◽  
V. O. Vas’kovskiy ◽  
A. S. Volegov

Introduction The introduction indicates the need for the use of permanent magnets in various technology fields. The necessity of measuring the limit magnetic hysteresis loop for the correct calculation of magnetic system parameters is considered. The main sources of error when measuring boundary hysteresis loops are given. The practical impossibility of verifying blocks of magnetic measuring systems element-by-element is noted. This paper is devoted to the development of reference materials (RMs) for the magnetic properties of hard magnetic materials based on Nd2Fe14B, a highly anisotropic intermetallic compound.Materials and measuring methods Nd-Fe-B permanent magnets were selected as the material for developing the RMs. RM certified values were established using a CYCLE‑3 apparatus included in the GET 198‑2017 State Primary Measurement Standard for units of magnetic loss power, magnetic induction of constant magnetic field in a range from 0.1 to 2.5 T and magnetic flux in a range from 1·10–5 to 3·10–2 Wb.Results and its discussion Based on the experimentally obtained boundary hysteresis loops, the magnetic characteristics were evaluated, the interval of permitted certified values was set, the measurement result uncertainty of certified values was estimated, the RM validity period was established and the first RM batch was released.Conclusion On the basis of conducted studies, the RM type for magnetic properties of NdFeB alloy-based hard magnetic materials was approved (MS NdFeB set). The developed RM set was registered under the numbers GSO 11059–2018 / GSO 11062–2018 in the State RM Register of the Russian Federation.


Sign in / Sign up

Export Citation Format

Share Document