scholarly journals Up-regulation of sucrose-P synthase in rice under elevated carbon dioxide and temperature conditions

2008 ◽  
Vol 54 (No. 4) ◽  
pp. 155-162 ◽  
Author(s):  
K.B. Sujatha ◽  
D.C. Uprety ◽  
D. Nageswara Rao ◽  
P. Raghuveer Rao ◽  
N. Dwivedi

Basmati rice (<I>Oryza sativa</I> L.) cultivars viz. PRH-10 (pusa rice hybrid-10) and PS-2 (Pusa Sugandh-2) were grown under two different day/night temperatures (31/24°C, 35/28°C) at ambient (370 &mu;mol/mol) and elevated (550 &mu;mol/mol) carbon dioxide (CO<sub>2</sub>) concentration, respectively, to characterize how an increase in CO<sub>2</sub> and temperature affects rice photosynthesis and carbohydrate metabolism. At elevated CO<sub>2</sub>, the photosynthetic rates increased under both the temperature regimes, compared with plants grown at ambient CO<sub>2</sub>. The photosynthetic rate, sucrose-P synthase (SPS) activity and accumulation of soluble sugars and starch were higher in PRH-10 (pusa rice hybrid-10), compared to PS-2 (Pusa Sugandh-2). Elevated temperature decreased the photosynthetic rates both under ambient and elevated CO<sub>2</sub> conditions. The SPS (sucrose-P synthase) activity and the accumulation of soluble sugars and starch were enhanced at elevated CO<sub>2</sub> under both temperature regimes compared with plants grown at ambient CO<sub>2</sub>. The up-regulation of SPS (sucrose-P synthase) under elevated CO<sub>2</sub> and temperature would be beneficial for growth and productivity of rice plants for the future climatic conditions.

2021 ◽  
Vol 42 (5) ◽  
pp. 1289-1297
Author(s):  
N. Rahman ◽  
◽  
R. Das ◽  
B.D. Narzary ◽  
D.B. Phookan ◽  
...  

Aim: The present investigation was undertaken to study the response of some garlic varieties of Allium sativum under different ambient and elevated CO2 and temperature conditions in order to investigate the physiological responses under changing climatic condition. Methodology: A two factorial CRD experiment was conducted for two years with four varieties of Allium sativum (Ekfutia Assam, Assam Local, Bhima Omkar and Bhima Purple) under four atmospheric regimes [T1= Ambient CO2 and temperature; T2= Carbon dioxide Temperature Gradient Tunnel-I (400 ppm CO2 + 2oC higher than ambient); T3 = Carbon dioxide Temperature Gradient Tunnel-II (550 ppm CO2 + 4oC higher than ambient); T4 = Carbon dioxide Temperature Gradient Tunnel-III (700 ppm CO2 + 6oC higher than ambient)]. Major changes in physiological parameters of the varieties were recorded in Carbon dioxide Temperature Gradient Tunnel-II as compared to ambient condition. The rate of photosynthesis was measured on fully expanded youngest leaves of each sample plant using a portable Infrared Gas Analyzer. Results: The mean photosynthetic rate of all four varieties grown over two years was 13.43% higher in Carbon dioxide Temperature Gradient Tunnel-II over varieties grown for two consecutive years under Ambient CO2 and temperature. However, high CO2 concentration and temperature stress significantly reduced the stomatal conductance approximately by 27.48%. Interpretation: The results of this study gives a comprehensive analysis of garlic varieties under four different climatic conditions of CO2 and temperature and revealed that Ekfutia Assam and Assam Local and garlic varieties Bhima Omkar and Bhima Purple were promising varieties as they responded significantly to elevated CO2 and temperature regimes. This may provide some critical inputs for optimizing the strategies in future farming and farming opportunities of this commercially and medicinally important crop under changing climatic conditions.


2021 ◽  
Vol 54 (3) ◽  
pp. 231-243
Author(s):  
Chao Liu ◽  
Zhenghua Hu ◽  
Rui Kong ◽  
Lingfei Yu ◽  
Yuanyuan Wang ◽  
...  

2008 ◽  
Vol 88 (2) ◽  
pp. 163-174 ◽  
Author(s):  
C F Drury ◽  
X M Yang ◽  
W D Reynolds ◽  
N B McLaughlin

It is well established that nitrous oxide (N2O) and carbon dioxide (CO2) emissions from agricultural land are influenced by the type of crop grown, the form and amount of nitrogen (N) applied, and the soil and climatic conditions under which the crop is grown. Crop rotation adds another dimension that is often overlooked, however, as the crop residue being decomposed and supplying soluble carbon to soil biota is usually from a different crop than the crop that is currently growing. Hence, the objective of this study was to compare the influence of both the crop grown and the residues from the preceding crop on N2O and CO2 emissions from soil. In particular, N2O and CO2 emissions from monoculture cropping of corn, soybean and winter wheat were compared with 2 -yr and 3-yr crop rotations (corn-soybean or corn-soybean-winter wheat). Each phase of the rotation was measured each year. Averaged over three growing seasons (from April to October), annual N2O emissions were about 3.1 to 5.1 times greater in monoculture corn (2.62 kg N ha-1) compared with either monoculture soybean (0.84 kg N ha-1) or monoculture winter wheat (0.51 kg N ha-1). This was due in part to the higher inorganic N levels in the soil resulting from the higher N application rate with corn (170 kg N ha-1) than winter wheat (83 kg N ha-1) or soybean (no N applied). Further, the previous crop also influenced the extent of N2O emissions in the current crop year. When corn followed corn, the average N2O emissions (2.62 kg N ha-1) were about twice as high as when corn followed soybean (1.34 kg N ha-1) and about 60% greater than when corn followed winter wheat (1.64 kg N ha-1). Monoculture winter wheat had about 45% greater CO2 emissions than monoculture corn or 51% greater emissions than monoculture soybean. In the corn phase, CO2 emissions were greater when the previous crop was winter wheat (5.03 t C ha-1) than when it was soybean (4.20 t C ha-1) or corn (3.91 t C ha-1). Hence, N2O and CO2 emissions from agricultural fields are influenced by both the current crop and the previous crop, and this should be accounted for in both estimates and forecasts of the emissions of these important greenhouse gases. Key words: Denitrification, soil respiration, rotation, crop residue


Sign in / Sign up

Export Citation Format

Share Document