scholarly journals The effect of chloride and sulphate application to soil on changes in nutrient content in barley shoot biomass at an early phase of growth

2011 ◽  
Vol 50 (No. 7) ◽  
pp. 295-302 ◽  
Author(s):  
J. Matula

In this study experiments primarily aimed at the needs of specification of an adequate soil reserve of labile sulphur were extended by investigations of the impact on interactions in nutrient uptake by a test barley plant. Vegetation (18-day) experiments under controlled conditions of cultivation were conducted on a diverse set of 48 soils from agricultural lands. Before barley sowing the experimental set of soils was divided into two variants: A &ndash; control (with NH<sub>4</sub>Cl application) and B &ndash; response variant [with (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> application], and a uniform dose of 26 mg N/kg soil was used. After the experiment terminated, concentrations of N, N-NO<sub>3</sub><sup>&ndash;</sup>, S, S-SO<sub>4</sub><sup>2&ndash;</sup>, P, K, Mg, Ca, Na, Mn and B were determined. Paired t-test revealed significant differences between the sets of data on variants A and B in barley yield and concentrations of sulphur, sulphate, nitrate, phosphorus and boron in barley plants. Sulphate variant (B) had higher yield of barley, higher concentrations of sulphur, sulphate and boron and lower concentrations of nitrate and phosphorus compared to variant A. The lower concentrations of nitrate and phosphorus could not be reasoned by the effect of dilution resulting from the higher barley yield. A substantial decrease in nitrate concentration was related to better utilisation of plant nitrogen after the nutrient status of soil was adjusted with sulphur. Phosphorus concentration in barley adequately corresponded to the soil reserve of labile phosphorus, but only after the phosphorus concentration in barley markedly decreased to the lower level in (sulphate) variant B. Higher concentration of boron in barley could potentially be related to the depression of phosphorus uptake after sulphate application.

2017 ◽  
pp. 80-92
Author(s):  
Koffi Djaman ◽  
Suat Irmak

Proper nitrogen (N) fertiliser application rates and timing of application, coupled with optimum irrigation management can improve the sustainability of maize production and reduce the risk of environmental contamination by nutrients. The impact of full and limited irrigation and rainfed conditions on in-season maize (Zea mays L.) shoot biomass nutrient concentration and critical N and phosphorus (P) indices were evaluated using a combination of measured nutrients and critical N and P models in south central Nebraska in 2009 and 2010. Four irrigation treatments [fully-irrigated treatment (FIT), 75% FIT, 60% FIT and 50% FIT) and rainfed] were imposed. Irrigation regimes impacted the shoot biomass N concentration. The shoot biomass N concentration was above the critical N (Ncrit) concentration throughout the growing season under FIT and 75% FIT and was below the Ncrit value for the most limited irrigation (60% FIT and 50% FIT) and rainfed treatments. Nitrogen nutrient index (NNI) varied from 0.68 to 2.0. Biomass N concentration was below Ncrit [i.e., NNI<1] from 105 days after planting (DAP) to harvest under rainfed and 50% FIT and from 114 DAP to harvest under 60% FIT. Overall, the FIT and the 75% FIT had NNI values greater than 1.0 throughout both growing seasons. Phosphorus concentration, which decreased with biomass accumulation and irrigation amounts, varied from 1.0 to 4.8 g kg–1, with FIT having the highest biomass P concentration. The critical N model combined with NNI can be used to evaluate N and P in maize for in-season nutrient diagnosis under the conditions presented in this research.


Author(s):  
Christina Hagerty ◽  
Katherine McLaughlin ◽  
Duncan R Kroese ◽  
Larry Lutcher

Fusarium crown rot (FCR) is a major limitation to the wheat (Triticum aestivum L.) industry in the inland Pacific Northwest (PNW), USA. Genetic resistance to FCR is poorly understood and major-gene resistance is not available in adapted cultivars. Chemical control is ineffective and crop rotations, which disrupt cycles of the disease, are not feasible in the region’s precipitation-limited climate. Cultural control methods are the only realistic option for farmers who struggle to minimize the impact of this disease. It is well-established that FCR is favored by moisture-limited environments and an oversupply of plant-available nitrogen in soil. Effects of the supply of phosphorus in soil have not been clearly delineated. We conducted a two-year FCR experiment at two locations in the low precipitation (< 30 cm) zone of north-central Oregon. Phosphorus fertilizer was applied in-furrow, at rates of 0, 5, and 15 kg P ha-1, to plots planted with either a hard red or soft white winter wheat cultivar. The 15 kg P ha-1 application rate increased tissue phosphorus concentration, early season dry matter, and phosphorus uptake at both locations and both years of this study. Phosphorus treatment had no effect on grain yield, protein, or test weight. Phosphorus had no effect on the severity of FCR. This research improved our knowledge of cultural management boundaries as they relate to the control of FCR.


2020 ◽  
Vol 65 (4) ◽  
Author(s):  
Andrey Belimov ◽  
Alexander Shaposhnikov ◽  
Vera Safronova ◽  
Yuri Gogolev

Rhizosphere bacteria are capable of utilizing various phytohormones (particularly auxins) as nutrients and thereby affect plant growth, nutrition and interactions with symbiotic microorganisms. Here, for the first time we evaluated the effects of rhizosphere bacteria Novosphingobium sp. P6W and Rhodococcus sp. P1Y capable of utilizing abscisic acid (ABA) on growth and nitrogen-fixing symbiosis of pea (Pisum sativum L.) line SGE and its Cd-insensitive mutant SGECdt using hydroponic culture. The plants were co-inoculated with the ABA-utilizing bacteria and nodule bacterium Rhizobium leguminosarum bv. viciae RCAM1066. Treatment with cadmium (Cd) was applied as an inducer of ABA biosynthesis in plants. In the presence of only nodule bacteria, Cd significantly inhibited the growth of roots and shoots and also decreased the nodule number and nitrogen-fixing activity in SGE peas, but not in the SGECdt mutant. Inoculation with ABA-utilizing bacteria also inhibited biomass production, nodulation and nitrogen-fixation of Cd-untreated SGE plants. This negative effect of bacteria on the SGECdt mutant was less pronounced. Contrary to this, ABA-utilizing bacteria had no effect on SGE plants treated with Cd, but decreased shoot biomass and nitrogen-fixing activity of the SGECdt mutant. Inoculation with ABA-utilizing bacteria had no effect on shoot Cd and nutrient content of both pea genotypes, suggesting that bacterial effects on plants were not associated with the plant nutrient status. We propose that the bacteria counteracted the increased ABA concentrations in SGE roots caused by Cd due to utilization of this phytohormone. However, opposite processes aimed at inhibiting and stimulating growth and legume–rhizobia symbiosis can be caused by the ABA-utilizing bacteria.


Soil Research ◽  
2015 ◽  
Vol 53 (1) ◽  
pp. 1 ◽  
Author(s):  
Getachew Agegnehu ◽  
Michael I. Bird ◽  
Paul N. Nelson ◽  
Adrian M. Bass

Deteriorating soil fertility and the concomitant decline in agricultural productivity are major concerns in many parts of the world. A pot experiment was conducted with a Ferralsol to test the hypothesis that application of biochar improves soil fertility, fertiliser-use efficiency, plant growth and productivity, particularly when combined with compost. Treatments comprised: untreated control; mineral fertiliser at rates of 280 mg nitrogen, 70 mg phosphorus and 180 mg potassium pot–1 (F); 75% F + 40 g compost pot–1 (F + Com); 100% F + 20 g willow biochar pot–1 (F + WB); 75% F + 10 g willow biochar + 20 g compost pot–1 (F + WB + Com); 100% F + 20 g acacia biochar pot–1 (F + AB); and 75% F + 10 g acacia biochar + 20 g compost pot–1 (F + AB + Com). Application of compost with fertiliser significantly increased plant growth, soil nutrient status and plant nutrient content, with shoot biomass (as a ratio of control value) decreasing in the order F + Com (4.0) > F + WB + Com (3.6) > F + WB (3.3) > F + AB + Com (3.1) > F + AB (3.1) > F (2.9) > control (1.0). Maize shoot biomass was positively significantly correlated with chlorophyll content, root biomass, plant height, and specific leaf weight (r = 0.99, 0.98, 0.96 and 0.92, respectively). Shoot and root biomass had significant correlations with soil water content, plant nutrient concentration, and soil nutrient content after harvesting. Principal component analysis (PCA) showed that the first component provided a reasonable summary of the data, accounting for ~84% of the total variance. As the plants grew, compost and biochar additions significantly reduced leaching of nutrients. In summary, separate or combined application of compost and biochar together with fertiliser increased soil fertility and plant growth. Application of compost and biochar improved the retention of water and nutrients by the soil and thereby uptake of water and nutrients by the plants; however, little or no synergistic effect was observed.


2019 ◽  
Vol 56 (3) ◽  
pp. 305-311
Author(s):  
Debasis Purohit ◽  
Mitali Mandal ◽  
Avisek Dash ◽  
Kumbha Karna Rout ◽  
Narayan Panda ◽  
...  

An effective approach for improving nutrient use efficiency and crop productivity simultaneously through exploitation of biological potential for efficient acquisition and utilization of nutrients by crops is very much needed in this current era. Thus, an attempt is made here to investigate the impact of long term fertilization in the soil ecology in rice-rice cropping system in post kharif - 2015 in flooded tropical rice (Oryza sativa L.) in an acidic sandy soil. The experiment was laid out in a randomized block design with quadruplicated treatments. Soil samples at different growth stages of rice were collected from long term fertilizer experiment.The studied long-term manured treatments included 100 % N, 100% NP, 100 % NPK, 150 % NPK and 100 % NPK+FYM (5 t ha-1) and an unmanured control. Soil fertility status like SOC content and other available nutrient content has decreased continuously towards the crop growth period. Comparing the results of different treatments, it was found that the application of 100% NPK + FYM exhibited highest nutrient content in soils. With regards to microbial properties it was also observed that the amount of microbial biomass carbon (MBC) and microbial biomass nitrogen ( MBN) showed highest accumulation in 100 % NPK + FYM at maximum tillering stage of the rice. The results further reveal that dehydrogenase activity was maximum at panicle initiation stage and thereafter it decreases. Soil organic carbon content, MBC, MBN and dehydrogenase activity were significantly correlated with each other. Significant correlations were observed between rice yield and MBC at maturity stage( R2 = 0.94**) and panicle initiation stage( R2 = 0.92**) and available nitrogen content at maturity stage( R2 = 0.91**).


2020 ◽  
Vol 51 (4) ◽  
pp. 1001-1014
Author(s):  
Sulaiman & Sadiq

The experiment was conducted in a greenhouse during 2017 and 2018 growing seasons to evaluate the impact of the shading and various nutrition programs on mitigating heat stress, reducing the use of chemical minerals, improving the reproductive growth and yield of tomato plant. Split-plot within Randomized Complete Block Design (RCBD) with three replications was conducted in this study. Shading factor was allocated in the main plots and the nutrition programs distributed randomly in the subplots. Results indicate that shading resulted in the decrease of daytime temperature by 5.7˚C as an average for both seasons; thus a significant increasing was found in leaf contents of macro nutrients (Nitrogen, Phosphorous, and Potassium), and micro nutrients (Iron, Zinc and Boron), except the Iron content in 2018 growing season. Furthermore, shading improved significantly the reproductive growth and tomato yield. Among the plant nutrition programs, the integrated nutrient management (INM) including the application of organic substances, bio inoculum of AMF and 50% of the recommended dose of chemical fertilizers; lead to the enhancement of nutrients content, reproductive characteristics and plant yield. Generally, combination of both shading and INM showed positive effects on plants nutrient status and persisting balance on tomato flowering growth and fruits yield.


1992 ◽  
Vol 27 (2) ◽  
pp. 271-286 ◽  
Author(s):  
Sonia Paulino Mattos ◽  
Irene Guimarães Altafin ◽  
Hélio José de Freitas ◽  
Cristine Gobbato Brandão Cavalcanti ◽  
Vera Regina Estuqui Alves

Abstract Built in 1959, Lake Paranoá, in Brasilia, Brazil, has been undergoing an accelerated process of nutrient enrichment, due to inputs of inadequately treated raw sewage, generated by a population of 600,000 inhabitants. Consequently, it shows high nutrient content (40 µg/L of total phosphorus and 1800 µg/L of total nitrogen), low transparency (0.65 m) and high levels of chlorophyll a (65 µg/L), represented mainly by Cylindrospermopsis raciborskii and sporadic bloom of Microcystis aeruginosa, which is being combatted with copper sulphate. With the absence of seasonality and a vertical distribution which is not very evident, the horizontal pattern assumes great importance in this reservoir, in which five compartments stand out. Based on this segmentation and on the identification of the total phosphorus parameter as the limiting factor for algal growth, mathematical models were developed which demonstrate the need for advanced treatment of all the sewage produced in its drainage basin. With this, it is expected that a process of restoration will be initiated, with a decline in total phosphorus concentration to readings below 25 µg/L. Additional measures are proposed to accelerate this process.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 553
Author(s):  
Inga-Mareike Bach ◽  
Lisa Essich ◽  
Torsten Müller

Despite phosphorus resources on Earth being limited, over fertilization in many agricultural situations causes significant resource consumption. Phosphorus-recycling within agricultural production can reduce global dilution into the environment and is thus essential to secure sustainable future supply. This study investigated the fertilization efficacy of phosphorus fertilizers recycled from biogas digestates in maize shoots grown under controlled greenhouse conditions, in two soils, in a pot experiment. Variables investigated were plant-available phosphorus in soil, plant biomass production, and concentration of phosphorus, calcium, and magnesium in shoots. Soils were treated with three different fertilizer fractions, separated from biogas digestates, at equivalent phosphorus concentrations, using different combinations and application techniques, isolated or in combination, and compared to triple superphosphate (TSP) as a reference. One of the fractions (P-Salt) had effects on biomass production and plant phosphorus concentration equivalent to TSP in agricultural surface soil. In the second soil (with less active soil life and nutrient content), equivalence to TSP was achieved with combinations of two recycled fractions (P-Salt and dried solids). The enhancement of the phosphorus fertilizing effect by the solids was synergistic, indicating that the solids had a soil conditioning effect. The results show that biogas digestates are a valuable source for phosphorus recycling of fractions that have equivalent or even superior fertilizing properties compared to TSP.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1171 ◽  
Author(s):  
Mitja Janža ◽  
Joerg Prestor ◽  
Simona Pestotnik ◽  
Brigita Jamnik

The assurance of drinking water supply is one of the biggest emerging global challenges, especially in urban areas. In this respect, groundwater and its management in the urban environment are gaining importance. This paper presents the modeling of nitrogen load from the leaky sewer system and from agriculture and the impact of this pressure on the groundwater quality (nitrate concentration) in the urban aquifer located beneath the City of Ljubljana. The estimated total nitrogen load in the model area of 58 km2 is 334 ton/year, 38% arising from the leaky sewer system and 62% from agriculture. This load was used as input into the groundwater solute transport model to simulate the distribution of nitrate concentration in the aquifer. The modeled nitrate concentrations at the observation locations were found to be on average slightly lower (2.7 mg/L) than observed, and in general reflected the observed contamination pattern. The ability of the presented model to relate and quantify the impact of pressures from different contamination sources on groundwater quality can be beneficially used for the planning and optimization of groundwater management measures for the improvement of groundwater quality.


Sign in / Sign up

Export Citation Format

Share Document