Predicting the impact of management and climate scenarios on groundwater nitrate concentration trends in southern Portugal

Author(s):  
Luís R. D. Costa ◽  
Rui T. Hugman ◽  
Tibor Y. Stigter ◽  
José Paulo Monteiro
Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 323
Author(s):  
Guilherme Pontes Luz ◽  
Rodrigo Amaro e Silva

The recently approved regulation on Energy Communities in Europe is paving the way for new collective forms of energy consumption and production, mainly based on photovoltaics. However, energy modeling approaches that can adequately evaluate the impact of these new regulations on energy community configurations are still lacking, particularly with regards to the grid tariffs imposed on collective systems. Thus, the present work models three different energy community configurations sustained on collective photovoltaics self-consumption for a small city in southern Portugal. This energy community, which integrates the city consumers and a local winery, was modeled using the Python-based Calliope framework. Using real electricity demand data from power transformers and an actual winery, the techno-economic feasibility of each configuration was assessed. Results show that all collective arrangements can promote a higher penetration of photovoltaic capacity (up to 23%) and a modest reduction in the overall cost of electricity (up to 8%). However, there are clear trade-offs between the different pathways: more centralized configurations have 53% lower installation costs but are more sensitive to grid use costs (which can represent up to 74% of the total system costs). Moreover, key actor’s individual self-consumption rate may decrease by 10% in order to benefit the energy community as a whole.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 544
Author(s):  
Hang Ning ◽  
Ming Tang ◽  
Hui Chen

Dendroctonus armandi (Coleoptera: Curculionidae: Scolytidae) is a bark beetle native to China and is the most destructive forest pest in the Pinus armandii woodlands of central China. Due to ongoing climate warming, D. armandi outbreaks have become more frequent and severe. Here, we used Maxent to model its current and future potential distribution in China. Minimum temperature of the coldest month and precipitation seasonality are the two major factors constraining the current distribution of D. armandi. Currently, the suitable area of D. armandi falls within the Qinling Mountains and Daba Mountains. The total suitable area is 15.83 × 104 km2. Under future climate scenarios, the total suitable area is projected to increase slightly, while remaining within the Qinling Mountains and Daba Mountains. Among the climate scenarios, the distribution expanded the most under the maximum greenhouse gas emission scenario (representative concentration pathway (RCP) 8.5). Under all assumptions, the highly suitable area is expected to increase over time; the increase will occur in southern Shaanxi, northwest Hubei, and northeast Sichuan Provinces. By the 2050s, the highly suitable area is projected to increase by 0.82 × 104 km2. By the 2050s, the suitable climatic niche for D. armandi will increase along the Qinling Mountains and Daba Mountains, posing a major challenge for forest managers. Our findings provide information that can be used to monitor D. armandi populations, host health, and the impact of climate change, shedding light on the effectiveness of management responses.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1171 ◽  
Author(s):  
Mitja Janža ◽  
Joerg Prestor ◽  
Simona Pestotnik ◽  
Brigita Jamnik

The assurance of drinking water supply is one of the biggest emerging global challenges, especially in urban areas. In this respect, groundwater and its management in the urban environment are gaining importance. This paper presents the modeling of nitrogen load from the leaky sewer system and from agriculture and the impact of this pressure on the groundwater quality (nitrate concentration) in the urban aquifer located beneath the City of Ljubljana. The estimated total nitrogen load in the model area of 58 km2 is 334 ton/year, 38% arising from the leaky sewer system and 62% from agriculture. This load was used as input into the groundwater solute transport model to simulate the distribution of nitrate concentration in the aquifer. The modeled nitrate concentrations at the observation locations were found to be on average slightly lower (2.7 mg/L) than observed, and in general reflected the observed contamination pattern. The ability of the presented model to relate and quantify the impact of pressures from different contamination sources on groundwater quality can be beneficially used for the planning and optimization of groundwater management measures for the improvement of groundwater quality.


2021 ◽  
pp. SP517-2020-164
Author(s):  
N. Surdyk ◽  
L. Gourcy ◽  
V. Bault ◽  
N. Baran

AbstractSince the 1980s, nitrate has been shown to be present in soils and the vadose zone of various types of geological materials years after fertiliser application. In chalk where the vadose zone is thick, nitrate storage can be considerable and its transport time toward groundwater can be lengthy.In this context, evaluation of the impact of changes in agricultural practices on groundwater quality remains a major question. Improvement of groundwater quality can in certain cases be greatly delayed after the implementation of environmental agricultural practices.The principal objective of this study is to improve our knowledge of when changes in agricultural practices will have a noticeable effect on groundwater quality.To meet this objective, nitrate concentration profiles were performed in agricultural plots in Picardy (France). A crop marker event was used to calculate the transport velocity of water and associated solutes. This method is useful when other tracers (as tritium or chlorine) cannot be used. Estimated velocities range from 0.51 to 0.54 m/year; these values are similar to those described in similar chalk aquifers.


2017 ◽  
Author(s):  
Ran Zhai ◽  
Fulu Tao ◽  
Zhihui Xu

Abstract. The Paris Agreement set a long-term temperature goal of holding the global average temperature increase to below 2.0 ℃ above pre-industrial levels, and pursuing efforts to limit this to 1.5 ℃, it is therefore important to understand the impacts of climate change under 1.5 ℃ and 2.0 ℃ warming scenarios for climate adaptation and mitigation. Here, climate scenarios by four Global Circulation Models (GCMs) for the baseline (2006–2015), 1.5 ℃ and 2.0 ℃ warming scenarios (2106–2115) were used to drive the validated Variable Infiltration Capacity (VIC) hydrological model to investigate the impacts of global warming on river runoff and Terrestrial Ecosystem Water Retention (TEWR) in China. The trends in annual mean temperature, precipitation, river runoff and TEWR were analysed at the grid and basin scale. Results showed that there were large uncertainties in climate scenarios from the different GCMs, which led to large uncertainties in the impact assessment. The differences among the four GCMs were larger than differences between the two warming scenarios. The interannual variability of river runoff increased notably in areas where it was projected to increase, and the interannual variability increased notably from 1.5 ℃ warming scenario to 2.0 ℃ warming scenario. By contrast, TEWR would remain relatively stable. Both extreme low and high river runoff would increase under the two warming scenarios in most areas in China, with high river runoff increasing more. And the risk of extreme river runoff events would be higher under 2.0 ℃ warming scenario than under 1.5 ℃ warming scenario in term of both extent and intensity. River runoff was significantly positively correlated to precipitation, while increase in maximum temperature would generally cause river runoff to decrease through increasing evapotranspiration. Likewise, precipitation also played a dominant role in affecting TEWR. Our findings highlight climate change mitigation and adaptation should be taken to reduce the risks of hydrological extreme events.


2021 ◽  
Vol 43 ◽  
pp. e56026
Author(s):  
Gabriela Leite Neves ◽  
Jorim Sousa das Virgens Filho ◽  
Maysa de Lima Leite ◽  
Frederico Fabio Mauad

Water is an essential natural resource that is being impacted by climate change. Thus, knowledge of future water availability conditions around the globe becomes necessary. Based on that, this study aimed to simulate future climate scenarios and evaluate the impact on water balance in southern Brazil. Daily data of rainfall and air temperature (maximum and minimum) were used. The meteorological data were collected in 28 locations over 30 years (1980-2009). For the data simulation, we used the climate data stochastic generator PGECLIMA_R. It was considered two scenarios of the fifth report of the Intergovernmental Panel on Climate Change (IPCC) and a scenario with the historical data trend. The water balance estimates were performed for the current data and the simulated data, through the methodology of Thornthwaite and Mather (1955). The moisture indexes were spatialized by the kriging method. These indexes were chosen as the parameters to represent the water conditions in different situations. The region assessed presented a high variability in water availability among locations; however, it did not present high water deficiency values, even with climate change. Overall, it was observed a reduction of moisture index in most sites and in all scenarios assessed, especially in the northern region when compared to the other regions. The second scenario of the IPCC (the worst situation) promoting higher reductions and dry conditions for the 2099 year. The impacts of climate change on water availability, identified in this study, can affect the general society, therefore, they must be considered in the planning and management of water resources, especially in the regional context


2011 ◽  
Vol 50 (No. 7) ◽  
pp. 295-302 ◽  
Author(s):  
J. Matula

In this study experiments primarily aimed at the needs of specification of an adequate soil reserve of labile sulphur were extended by investigations of the impact on interactions in nutrient uptake by a test barley plant. Vegetation (18-day) experiments under controlled conditions of cultivation were conducted on a diverse set of 48 soils from agricultural lands. Before barley sowing the experimental set of soils was divided into two variants: A &ndash; control (with NH<sub>4</sub>Cl application) and B &ndash; response variant [with (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> application], and a uniform dose of 26 mg N/kg soil was used. After the experiment terminated, concentrations of N, N-NO<sub>3</sub><sup>&ndash;</sup>, S, S-SO<sub>4</sub><sup>2&ndash;</sup>, P, K, Mg, Ca, Na, Mn and B were determined. Paired t-test revealed significant differences between the sets of data on variants A and B in barley yield and concentrations of sulphur, sulphate, nitrate, phosphorus and boron in barley plants. Sulphate variant (B) had higher yield of barley, higher concentrations of sulphur, sulphate and boron and lower concentrations of nitrate and phosphorus compared to variant A. The lower concentrations of nitrate and phosphorus could not be reasoned by the effect of dilution resulting from the higher barley yield. A substantial decrease in nitrate concentration was related to better utilisation of plant nitrogen after the nutrient status of soil was adjusted with sulphur. Phosphorus concentration in barley adequately corresponded to the soil reserve of labile phosphorus, but only after the phosphorus concentration in barley markedly decreased to the lower level in (sulphate) variant B. Higher concentration of boron in barley could potentially be related to the depression of phosphorus uptake after sulphate application.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 639 ◽  
Author(s):  
Bright Freduah ◽  
Dilys MacCarthy ◽  
Myriam Adam ◽  
Mouhamed Ly ◽  
Alex Ruane ◽  
...  

Climate change is estimated to exacerbate existing challenges faced by smallholder farmers in Sub-Sahara Africa. However, limited studies quantify the extent of variation in climate change impact under these systems at the local scale. The Decision Support System for Agro-technological Transfer (DSSAT) was used to quantify variation in climate change impacts on maize yield under current agricultural practices in semi-arid regions of Senegal (Nioro du Rip) and Ghana (Navrongo and Tamale). Multi-benchmark climate models (Mid-Century, 2040–2069 for two Representative Concentration Pathways, RCP4.5 and RCP8.5), and multiple soil and management information from agronomic surveys were used as input for DSSAT. The average impact of climate scenarios on grain yield among farms ranged between −9% and −39% across sites. Substantial variation in climate response exists across farms in the same farming zone with relative standard deviations from 8% to 117% at Nioro du Rip, 13% to 64% in Navrongo and 9% to 37% in Tamale across climate models. Variations in fertilizer application, planting dates and soil types explained the variation in the impact among farms. This study provides insight into the complexities of the impact of climate scenarios on maize yield and the need for better representation of heterogeneous farming systems for optimized outcomes in adaptation and resilience planning in smallholder systems.


Sign in / Sign up

Export Citation Format

Share Document