scholarly journals Raloxifene inhibits the overexpression of TGF-β1 in cartilage and regulates the metabolism of subchondral bone in rats with osteoporotic osteoarthritis

Author(s):  
Shao-Hua Ping ◽  
Fa-Ming Tian ◽  
Hao Liu ◽  
Qi Sun ◽  
Li-Tao Shao ◽  
...  

Overexpression of transforming growth factor-beta 1 (TGF-β1) and subchondral bone remodelling play key roles in osteoarthritis (OA). Raloxifene (RAL) reduces the serum level of TGF-β1 in postmenopausal women. However, the effect of RAL on TGF-β1 expression in articular cartilage is still unclear. Therefore, we aimed to investigate the protective effect of RAL on osteoporotic osteoarthritis via affecting TGF-β1 expression in cartilage and the metabolism of subchondral bone. Osteoporotic osteoarthritis was induced by a combination of anterior cruciate transection (ACLT) and ovariectomy (OVX). Rats were divided into five groups (n = 12): The sham group, the ACLT group, the OVX group, the ACLT + OVX group, and the RAL group (ACLT + OVX + RAL, 6.25 mg/kg/day for 12 weeks). Assessment was performed by histomorphology, microcomputed tomography (micro-CT) scan, immunohistochemistry, and tartrate-resistant acid phosphatase (TRAP) staining. We found that severe cartilage degeneration was shown in the ACLT + OVX group. The histomorphological scores, the levels of TGF-β1, and its related catabolic enzymes and osteoclasts numbers in the ACLT + OVX group were higher than those in other groups (p < 0.05). Furthermore, structure model index (SMI) and trabecular spacing (Tb.Sp) were decreased (p < 0.05), while bone mineral density (BMD), bone volume fraction (BV/TV), and trabecular number (Tb.N) were increased by RAL compared with the ACLT + OVX group (p < 0.05). Our findings demonstrated that RAL in clinical doses retards the development of osteoporotic osteoarthritis by inhibiting the overexpression of TGF-β1 in cartilage and regulating the metabolism of subchondral bone. These results provide support for RAL in the expansion of clinical indication for prevention and treatment in postmenopausal osteoarthritis.

2009 ◽  
Vol 87 (1) ◽  
pp. 51-55 ◽  
Author(s):  
Yong-Qi Li ◽  
Hui Ji ◽  
Yang Shen ◽  
Li-Ju Ding ◽  
Pei Zhuang ◽  
...  

Approximately 50% of hypertensive patients are postmenopausal women; therefore, any antihypertensive therapy must not adversely affect bone loss in this population. Recently, however, concern has been raised that use of angiotensin AT1 receptor antagonists may increase the tendency to develop postmenopausal osteoporosis by decreasing transforming growth factor-β1 (TGF-β1), which has been implicated in bone mass maintenance. In the present study, we selected telmisartan and valsartan as representatives of angiotensin AT1 receptor antagonists and used ovariectomized (OVX) rats as a model of human postmenopausal osteoporosis. After 3 months treatment with telmisartan (5 mg/kg daily) or valsartan (10 mg/kg daily), OVX rats showed no signs of adverse effects on bone mineral density of the lumbar vertebrae (L1–L5) or the total femur, nor did treatment affect serum levels of osteocalcin and osteoclast-derived tartrate-resistant acid phosphatase (TRACP-5b). Bone TGF-β1 content remained unchanged, although treatment with telmisartan and valsartan significantly reduced serum TGF-β1 levels (p < 0.05). In conclusion, chronic treatment with angiotensin AT1 receptor antagonists reduced serum but not bone TGF-β1 levels and did not accelerate ovariectomy-induced bone loss in rats.


2020 ◽  
Vol 99 (13) ◽  
pp. 1469-1477
Author(s):  
J.L. Sun ◽  
J.F. Yan ◽  
S.B. Yu ◽  
J. Zhao ◽  
Q.Q. Lin ◽  
...  

Abnormal subchondral bone remodeling plays important roles during osteoarthritis (OA) pathology. Recent studies show that bone marrow mesenchymal stem cells (BMSCs) in osteoarthritic subchondral bones exhibit a prominent pro-osteoclastic effect that contributes to abnormal subchondral bone remodeling; however, the pathologic mechanism remains unclear. In the present study, we used a mouse model with OA-like change in the temporomandibular joint (TMJ) induced by an experimentally unilateral anterior crossbite (UAC) and found that the level of microRNA-29b ( miR-29b), but not miR-29a or miR-29c, was markedly lower in BMSCs from subchondral bones of UAC mice as compared with that from the sham control mice. With an intra-articular aptamer delivery system, BMSC-specific overexpression of miR-29b by aptamer-agomiR-29b rescued subchondral bone loss and osteoclast hyperfunction in UAC mice, as demonstrated by a significant increase in bone mineral density, bone volume fraction, trabecular thickness, and the gene expression of osteocalcin and Runx2 but decreased trabecular separation, osteoclast number and osteoclast surface/bone surface, and the gene expression of cathepsin K, Trap, Wnt5a, Rankl, and Rank as compared with those in the UAC mice treated by aptamer-NC (all P < 0.05). In addition, BMSC-specific inhibition of miR-29b by aptamer-antagomiR-29b exacerbated those responses in UAC mice. Notably, although it primarily affected miR-29b levels in the subchondral bone (but not in cartilage and synovium), BMSC-specific overexpression of miR-29b in UAC mice largely rescued OA-like cartilage degradation, including decreased chondrocyte density, cartilage thickness, and the percentage areas of proteoglycans and type II collagen, while BMSC-specific inhibition of miR-29b aggravated these characteristics of cartilage degradation in UAC mice. Moreover, we identified Wnt5a, but not Rankl or Sdf-1, as the direct target of miR-29b. The results of the present study indicate that miR-29b is a key regulator of the pro-osteoclastic effects of BMSCs in TMJ-OA subchondral bones and plays important roles in the TMJ-OA progression.


2021 ◽  
Vol 22 (4) ◽  
pp. 2097
Author(s):  
Jiyeon Yu ◽  
Sumi Kim ◽  
Nari Lee ◽  
Hyoeun Jeon ◽  
Jun Lee ◽  
...  

Paired box protein 5 (Pax5) is a crucial transcription factor responsible for B-cell lineage specification and commitment. In this study, we identified a negative role of Pax5 in osteoclastogenesis. The expression of Pax5 was time-dependently downregulated by receptor activator of nuclear factor kappa B (RANK) ligand (RANKL) stimulation in osteoclastogenesis. Osteoclast (OC) differentiation and bone resorption were inhibited (68.9% and 48% reductions, respectively) by forced expression of Pax5 in OC lineage cells. Pax5 led to the induction of antiosteoclastogenic factors through downregulation of B lymphocyte-induced maturation protein 1 (Blimp1). To examine the negative role of Pax5 in vivo, we generated Pax5 transgenic (Pax5Tg) mice expressing the human Pax5 transgene under the control of the tartrate-resistant acid phosphatase (TRAP) promoter, which is expressed mainly in OC lineage cells. OC differentiation and bone resorption were inhibited (54.2–76.9% and 24.0–26.2% reductions, respectively) in Pax5Tg mice, thereby contributing to the osteopetrotic-like bone phenotype characterized by increased bone mineral density (13.0–13.6% higher), trabecular bone volume fraction (32.5–38.1% higher), trabecular thickness (8.4–9.0% higher), and trabecular number (25.5–26.7% higher) and decreased trabecular spacing (9.3–10.4% lower) compared to wild-type control mice. Furthermore, the number of OCs was decreased (48.8–65.3% reduction) in Pax5Tg mice. These findings indicate that Pax5 plays a negative role in OC lineage specification and commitment through Blimp1 downregulation. Thus, our data suggest that the Pax5–Blimp1 axis is crucial for the regulation of RANKL-induced osteoclastogenesis.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Shidi Hu ◽  
Jin Li ◽  
Lu Liu ◽  
Ruchun Dai ◽  
Zhifeng Sheng ◽  
...  

Bone mechanical properties encompass both geometric and material factors, while the effects of estrogen deficiency on the material and structural characteristics of bone at micro- to nanoscales are still obscure. We performed a series of combined methodological experiments, including nanoindentation assessment of intrinsic material properties, atomic force microscopy (AFM) characterization of trabecular (Tb) nanostructure, and Tb microarchitecture and 2D BMD. At 15 weeks after surgery, we found significantly less Tb bone mineral density (BMD) at organ (−27%) and at tissue level (−12%), Tb bone volume fraction (−29%), Tb thickness (−14%), and Tb number (−17%) in ovariectomy (OVX) rats than in sham operated (SHAM) rats, while the structure model index (+91%) and Tb separation (+19%) became significantly greater. AFM images showed lower roughness Tb surfaces with loosely packed large nodular structures and less compacted interfibrillar space in OVX than in SHAM. However, no statistically significant changes were in the Tb intrinsic material properties—nanoindentation hardness, elastic modulus, and plastic deformation—nanoindentation depths, and residual areas. Therefore, estrogen deprivation results in a dramatic deterioration in Tb micro/nanoarchitectures, 3D volumetric BMD at both organ and tissue levels, and 2D BMD, but not in the nanomechanical properties of the trabeculae per se.


2019 ◽  
Vol 43 (1) ◽  
Author(s):  
Manal G. Mahmoud ◽  
Mohsen S. Asker ◽  
Mohamed E. El Awady ◽  
Amal I. Hassan ◽  
Nadia A. R. Zaharan ◽  
...  

Abstract Background Nanomedicine contributes to the efficiency of pharmacological treatments and progresses rapidly. The present study was designed to produce exopolysaccharide (BSEPS) from Bacillus subtilis sp. strain reported in our previous study was further characterized, and its BSEPS for synthesis of the nanoparticle Ag-BSEPS using microwave heating to determine the possible effects of a prepared solution containing Ag-BSEPS versus thioacetamide (TAA) evoked liver fibrosis in Wister albino rats. Nanoparticles with silver (Ag) core have been synthesized in an aqueous solution after exposure of BSEPS to periodate oxidation. Animals were split into four groups: I - control rats, water ad libitum for 6 weeks; II - rats were injected with TAA 200 mg/kg-1 3 times/week for 4 weeks IP; III - Ag-BSEPS 100 mg/kg-1 IP twice a week for 6 weeks; and IV - TAA, as group II followed by Ag-BSEPS as group III. The antifibrotic effects of Ag-BSEPS were appraised by determining different hepatotoxicity indices, oxidative stress, and inflammatory and liver fibrosis markers. Results Nanoparticles were obtained with a diameter size range of 50–100 nm characterized by SEM and TEM without using any harmful reagents. Results evinced considerably reduced activity of liver functions such as transaminases (AST, ALT), gamma-glutamyl transferase (GGT), and alkaline phosphatase (ALP) in the group which received TAA followed by Ag-BSEPS compared to the other group which received only TAA. In the current results, the administration of Ag-BSEPS showed an improvement in the proinflammatory cytokines. On the contrary, the antioxidant enzymes in liver homogenates revealed significant improvement (concentration of glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), and catalase (CAT) increases) in animals with TAA-induced liver damage followed by Ag-BSEPS. Moreover, the activities of the fibrotic markers transforming growth factor-beta 1(TGF-β1) and type III pro-collagen (PCIII) were increased in liver tissues in the group which was given TAA alone as compared to the controls. The percentage of fibrosis of hepatic tissue had a positive correlation with the levels of PCIII and TGF-β1, followed by Ag-BSEPS compared to the TAA group without nanocomposite treatment. Microscopic examinations revealed inhibitory effects of Ag-BSEPS on inflammatory changes and deterrent of liver fibrosis. Conclusion It was suggested that the biochemical and histological amelioration observed in Ag-BSEPS (100 mg/kg-1 twice a week for 6 weeks) treated the fibrotic rats.


2021 ◽  
pp. 036354652110285
Author(s):  
Jong Pil Yoon ◽  
Hun-Min Kim ◽  
Jin-Hyun Choi ◽  
Hae Rim Kang ◽  
Dong Hyun Kim ◽  
...  

Background: The healing failure rate after rotator cuff repair is considerably high. Purpose: To evaluate the effect of a porous suture containing transforming growth factor beta 1 (TGF-β1) on the sustained release of TGF-β1 and rotator cuff healing in a rat model. Study Design: Controlled laboratory study. Methods: A porous suture was developed, and its tensile strength was measured. TGF-β1 was delivered using the porous suture, and a TGF-β1 release test and human fibroblast proliferation assay were performed. For the animal experiment, 30 rats were randomly allocated into 3 groups (n = 10 each). A bilateral supraspinatus tendon tear was made in all the rats, and repair was performed. Group 1 received repair only; group 2, repair and a single injection of TGF-β1; and group 3, repair using the porous suture containing TGF-β1. Eight weeks after repair, biomechanical and histological analyses were performed. Results: The porous suture was successfully developed with mechanical properties compatible with the conventional suture, and the sustained release of TGF-β1 from the porous suture was confirmed. In addition, the cell proliferation assay confirmed the biological safety of the porous suture. In the animal experiment, group 3 biomechanically exhibited the largest cross-sectional area and the highest ultimate failure load and ultimate stress (all P < .05). Histological examination revealed that group 3 showed significantly better collagen fiber density and tendon-to-bone maturation than did groups 1 and 2 (all P < .05). Conclusion: The porous suture containing TGF-β1 could sustainedly and safely release TGF-β1, and its use during rotator cuff repair could improve rotator cuff healing, as assessed on the basis of the biomechanical and histological changes in the rat model in this study. Considering the effectiveness, safety, and convenience of the porous suture without extra effort in surgery, the findings of the present study will have a far-reaching effect on the treatment of rotator cuff tears. Clinical Relevance: The porous suture containing TGF-β1 might improve healing after rotator cuff repair.


2021 ◽  
pp. 096032712110084
Author(s):  
AM Kabel ◽  
HH Arab ◽  
MA Abd Elmaaboud

Hepatocellular carcinoma (HCC) is the most common form of liver malignancies worldwide. Alogliptin is an anti-diabetic that may have effective anticancer properties against many types of malignancies. Taxifolin is a flavonoid that has potent antioxidant, and anti-inflammatory properties. The objective of this study was to explore the impact of alogliptin and/or taxifolin on diethyl nitrosamine-induced HCC in rats. One hundred male Wistar rats were divided into five equal groups as follows: Control; HCC; HCC + Alogliptin; HCC + Taxifolin; and HCC + Alogliptin + Taxifolin group. The survival rate, liver function tests, tissue antioxidant enzymes, malondialdehyde (MDA), nuclear factor (erythroid derived 2)-like 2 (Nrf2), transforming growth factor beta 1 (TGF-β1), interleukin 1 alpha (IL-1α), and toll-like receptor 4 (TLR4) were measured. Also, hepatic caspase 3, caspase 9, beclin-1, and c-Jun NH2-terminal kinase (JNK) in addition to serum alpha-fetoprotein (AFP) and α-L-Fucosidase (AFU) were assessed. Specimens of the liver were subjected to histopathological examination. Alogliptin and/or taxifolin induced significant improvement of liver function tests with significant increase in the survival rate, tissue antioxidant enzymes, Nrf2, caspase 3, caspase 9, Beclin-1 and JNK activities associated with significant decrease in serum AFP and AFU, tissue MDA, TGF-β1, IL-1α and TLR4 expression compared to HCC group. These results were significant with taxifolin/alogliptin combination when compared to the use of each of these agents alone. In conclusion, taxifolin/alogliptin combination might be used as adjuvant therapy for attenuation of HCC.


Sign in / Sign up

Export Citation Format

Share Document