scholarly journals Synthesis of bismuth ferrite nanopowder doped with erbium ions

Author(s):  
Elena V. Tomina ◽  
Anna A. Pavlenko ◽  
Nikolay A. Kurkin

The potential for the practical application of bismuth ferrite (BFO) in information storage, microelectronic, and spintronic devices and in medical sensors of various purpose is limited by the presence of a spin cycloid. Its destruction, including destruction due to doping with rare earth elements and the transfer of BFO to a nanoscale state, contributes to the occurrence of ferromagnetism and the manifestation of the magnetoelectric effect. The study was aimed at the synthesis of bismuth ferrite nanopowder doped with erbium ions.By spray pyrolysis at a temperature of 760 °C, we synthesised BFO samples with a nominal degree of doping with erbium ions from 0.05 to 0.20. The data of X-ray diffraction analysis show that there is a small amount of Bi25FeO39 and Bi2Fe4O9 in the doped samples.The shift of the BFO reflections on diffraction patterns towards larger 2q angles is representative of the incorporation of erbium ions into the crystal lattice of BiFeO3. The morphological characteristics of the samples were determined using transmission electron microscopy. According to the data of electron probe X-Ray microanalysis, the real composition of the doped ErxBi1-xFeO3 samples is very close to the nominal.The particles of ErxBi1-xFeO3 powders synthesised by spray pyrolysis have a nearly spherical shape, the particle-size distribution is in the range of 5–300 nm, the predominant number of particles have a size in the range of 50-200 nm, and the agglomeration is weak. The decrease in the crystal lattice parameters and the unit cell volume of ErxBi1-xFeO3 and an increase in the degree of doping with erbium ions confirm the incorporation of Er3+ into the BFO crystal lattice to the bismuth position.

2018 ◽  
Vol 1 (1) ◽  
pp. 57-66
Author(s):  
Fenfen Fenda Florena ◽  
◽  
Dwindra Wilham Maulana ◽  
Ferry Faizal ◽  
Bambang Mukti Wibawa ◽  
...  

Spherical particles of Zn doped MgO were prepared by one-step spray pyrolysis method. The crystalline nature and particle size of the samples were characterized by X-ray diffraction analysis (XRD). The morphology of samples was studied by scanning electron microscope (SEM) and the presence of Zn in the sample was confirmed by energy dispersive X-ray analysis (EDX). The optical properties of the samples were investigated using photoluminescence spectroscopy (PL) analysis to obtain excitation and emission spectra of the samples. Results indicated that the doped MgO particles exhibited a cubic structure without hexagonal wurtzite structure as the Zn concentrations were increased. Spherical shape and porous particles are found with increasing of doping concentration. The optical band gap of MgO altered with the addition of doping concentration. A considerable redshift of about ~0.08 – 0.13 eV in the excitation spectra of 2.22 eV emission band was revealed in Zn doped MgO samples. It was highlighted that Zn doped MgO prepared by the spray pyrolysis generated emission at UV-Vis wavelength required for many applications.


2021 ◽  
Vol 1039 ◽  
pp. 307-312
Author(s):  
Mohammad Malik Abood ◽  
Osama Abdul Azeez Dakhil ◽  
Aref Saleh Baron

Methyl ammonium lead iodide CH3NH3PbI3 Perovskite was synthesized by a new method mixing between one and two steps, in addition, the ethanol solvent was used to dissolve CH3NH3I and compared with isopropanol solvent. The characterizations of synthesized perovskite samples included the structural properties, morphological characteristics and optical properties. The intensity and orientation in X-ray diffraction patterns appear clearly in ethanol solvent while disappearing at a peak at 12o due to the speed reaction of perovskite in this solvent. Additionally, the ethanol solvent increasing the grain size of perovskite which homogeneity of the surface morphology. the ethanol solvent cause a decrease in the wavelength of absorbance edge in addition to an increase in the energy bandgap value. Keywords: Ethanol Solvent, Perovskite, Photovoltaic Technologies, X-ray diffraction.


2016 ◽  
Vol 49 (3) ◽  
pp. 976-986 ◽  
Author(s):  
Mojmír Meduňa ◽  
Claudiu Valentin Falub ◽  
Fabio Isa ◽  
Anna Marzegalli ◽  
Daniel Chrastina ◽  
...  

Extending the functionality of ubiquitous Si-based microelectronic devices often requires combining materials with different lattice parameters and thermal expansion coefficients. In this paper, scanning X-ray nanodiffraction is used to map the lattice bending produced by thermal strain relaxation in heteroepitaxial Ge microcrystals of various heights grown on high aspect ratio Si pillars. The local crystal lattice tilt and curvature are obtained from experimental three-dimensional reciprocal space maps and compared with diffraction patterns simulated by means of the finite element method. The simulations are in good agreement with the experimental data for various positions of the focused X-ray beam inside a Ge microcrystal. Both experiment and simulations reveal that the crystal lattice bending induced by thermal strain relaxation vanishes with increasing Ge crystal height.


2021 ◽  
Author(s):  
Sevda Sarıtaş ◽  
Tuba Çakıcı ◽  
Günay Merhan Muğlu ◽  
Muhammet Yıldırım

Abstract In this study, we, firstly, fabricated Fe 2 O 3 thin film recently promising to be used in spintronic technology by magnetron sputtering technique on ZnO thin film prepared by spray pyrolysis at 450 o C. The crystal structure, surface morphology and structure, chemical composition, optical and electronic properties, and electric properties of the Fe 2 O 3 /ZnO sample were performed by X-ray diffraction (XRD), scanning electron microscope (SEM) and atomic force microscope (AFM), energy-dispersive X-ray (EDX), ultraviolet-visible (UV-VIS) and Raman spectrometer, and Hall measurements, respectively. XRD measurements showed that Fe 2 O 3 and ZnO thin films have monoclinic and hexagonal crystal structures, respectively, and also both of them are polycrystalline. SEM images proved that there is a very good with the stoichiometric formation of ZnO nanocrystals of spherical shape and demonstrate aggregation of the particles and AFM images displays the distribution of flake-like of Fe 2 O 3 structure over the surface of ZnO. UV-VIS and Raman measurements revealed that the ZnO and Fe 2 O 3 /ZnO heterostructure band's band gap energy are 3.277 and 3.24 eV, respectively. Finally, the calculated values of electric conductivity, σ, electron density, n, and mobility of the electron, μ, using the data obtained from Hall measurements are 4.39x10 2 Ω -1 .m -1 , 6.88x10 21 m -3 and 3.99x10 -1 V -1 .m 2 . s, respectively.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Jessica Bitencourt Emilio Mendes ◽  
Manoela Klüppel Riekes ◽  
Viviane Matoso de Oliveira ◽  
Milton Domingos Michel ◽  
Hellen Karine Stulzer ◽  
...  

Microparticles of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(ε-caprolactone) (PCL) containing resveratrol were successfully prepared by simple emulsion/solvent evaporation. All formulations showed suitable encapsulation efficiency values higher than 80%. PHBV microparticles revealed spherical shape with rough surface and presence of pores. PCL microparticles were spherically shaped with smooth surface. Fourier-transformed infrared spectra demonstrated no chemical bond between resveratrol and polymers. X-ray powder diffraction patterns and differential scanning calorimetry analyses indicated that microencapsulation led to drug amorphization. These PHBV/PCL microparticles delayed the dissolution profile of resveratrol. Release profiles were better fitted to biexponential equation. The hypochlorous-acid-scavenging activity and 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation discoloration assay confirmed that the antioxidant activity of PHBV/PCL microparticles was kept, but was dependent on the microparticle morphology and dissolution profile. Resveratrol-loaded PHBV/PCL microparticles showed no cytotoxic effect on red blood cells.


2020 ◽  
Vol 855 ◽  
pp. 9-15 ◽  
Author(s):  
Fitria Ayu Sulistiani ◽  
Edi Suharyadi ◽  
Takeshi Kato ◽  
Satoshi Iwata

Bismuth ferrite (BiFeO3) nanoparticles has been synthesized by coprecipitation method with various NaOH concentration (4, 6, 8, and 10 M) and temperature (RT, 60, 80, and 100 C). X-ray diffraction patterns showed the emergence of Bi(OH)3 and Bi25FeO40 structures with crystallite size in the range of 15.1 nm to 35.6 nm. The particles sample was agglomerated. Hysterisis loop showed the linear M–H loops behaviour with no magnetization saturation in 15 kOe maximum field applied which indicates the antiferromagnetic properties. The coercivity field tends to increase by the increasing of the NaOH concentration and synthesis temperature. In addition, the annealing treatment could leads the increasing of coercivity fields while decreasing the magnetization of BFO sampel.


1979 ◽  
Vol 179 (1) ◽  
pp. 233-238 ◽  
Author(s):  
M Campos-Cavieres ◽  
T A Moore ◽  
R N Perham

Treatment of the purple membrane of Halobacterium halobium with tetranitromethane led to modification of tyrosine residues. Modification of more than 3-4 tyrosine residues per bacteriorhodopsin monomer caused a decrease in the light-induced proton-pumping ability of purple membrane in synthetic lipid vesicles, loss of the sharp X-ray-diffraction patterns characteristic of the crystal lattice, loss of the absorbance maximum at 560 nm, and change in the buoyant density of the membrane. No modification of lipid was detected. These changes were interpreted as a gradual denaturation of the protein component such that when 8-9 tyrosine residues are modified, no proton pumping is observed. Modification of less than 3-4 tyrosine residues with tetranitromethane caused an increse in light-induced proton pumping. It was possible to generate partly modified purple membrane which had completely lost the property of diffracting X-rays into the sharp pattern observed with native purple membrane, but which still retained the ability to pump protons in a vectorial manner. Retention of crystal lattice is not essential for proton pumping.


Author(s):  
Fenfen Fenda Florena ◽  
◽  
Dwindra Wilham Maulana ◽  
Ferry Faizal ◽  
Bambang Mukti Wibawa ◽  
...  

Spherical particles of Zn doped MgO were prepared by one-step spray pyrolysis method. The crystalline nature and particle size of the samples were characterized by X-ray diffraction analysis (XRD). The morphology of samples was studied by scanning electron microscope (SEM) and the presence of Zn in the sample was confirmed by energy dispersive X-ray analysis (EDX). The optical properties of the samples were investigated using photoluminescence spectroscopy (PL) analysis to obtain excitation and emission spectra of the samples. Results indicated that the doped MgO particles exhibited a cubic structure without hexagonal wurtzite structure as the Zn concentrations were increased. Spherical shape and porous particles are found with increasing of doping concentration. The optical band gap of MgO altered with the addition of doping concentration. A considerable redshift of about ~0.08 – 0.13 eV in the excitation spectra of 2.22 eV emission band was revealed in Zn doped MgO samples. It was highlighted that Zn doped MgO prepared by the spray pyrolysis generated emission at UV-Vis wavelength required for many applications.


2016 ◽  
Vol 18 (1) ◽  
pp. 3
Author(s):  
G. Partizan ◽  
B.Z. Mansurov ◽  
B.S. Medyanova ◽  
А.B. Koshanova ◽  
M.E. Mansurova ◽  
...  

This article presents the results of comprehensive study on the structure and<br />morphology of iron nanopowders synthesized by electric explosive evaporation of<br />metal wire. The results of scanning and transmission electron microscopy showed<br />that nanoclusters have a spherical shape with an average diameter of 65 nm. It<br />was revealed based on the analysis of the diffraction patterns that nanoparticles of<br />nanopowders obtained in electric explosion have a crystal lattice with a parameter<br />less than a standard cell. The results of computer experiments are in good agreement<br />with the findings of X-ray analysis. However, the question about the reasons of<br />distortion of the crystal lattice of nanoclusters remains controversial.


Sign in / Sign up

Export Citation Format

Share Document