scholarly journals Dynamics of an Epidemic Model under the Influence of Environmental Stress

Author(s):  
Sangeeta Saha ◽  
Guruprasad Samanta

We have considered a compartmental epidemiological model with infectious disease to observe the influence of environmental stress on disease transmission. The proposed model is well-defined as the population at each compartment remains positive and bounded with time. Dynamical behaviour of the model is observed by the stability and bifurcation analysis at the equilibrium points. Also, numerical simulation supports the theoretical proofs and the result shows that the system undergoes a forward bifurcation around the disease-free equilibrium. Our results indicate that with the increase of environmental pollution, the overall infected population increases. Also, the disease transmission rate among the susceptible and stressed population from asymptomatically infected individuals plays a crucial role to make a system endemic. A corresponding optimal control problem has also been proposed to control the disease prevalence as well as to minimize the cost by choosing the vaccination policy before being infected and treatment policy to the infected as control variables. Numerical figures indicate that the vaccination provided to susceptible needs some time to reduce the disease transmission but the vaccination provided to stressed individuals works immediately after implementation. The treatment policy for symptomatically infected individuals works with a higher rate at an earlier stage but the intensity decreases with time. Simultaneous implementation of all control interventions is more useful to reduce the size of overall infective individuals and also to minimize the economic burden. Hence, this research clearly expresses the impact of environmental pollution (specifically the influence of environmental stress) on the disease transmission in the population.

2021 ◽  
Vol 19 (2) ◽  
pp. 1677-1695
Author(s):  
Boli Xie ◽  
◽  
Maoxing Liu ◽  
Lei Zhang

<abstract><p>In order to study the impact of limited medical resources and population heterogeneity on disease transmission, a SEIR model based on a complex network with saturation processing function is proposed. This paper first proved that a backward bifurcation occurs under certain conditions, which means that $ R_{0} &lt; 1 $ is not enough to eradicate this disease from the population. However, if the direction is positive, we find that within a certain parameter range, there may be multiple equilibrium points near $ R_{0} = 1 $. Secondly, the influence of population heterogeneity on virus transmission is analyzed, and the optimal control theory is used to further study the time-varying control of the disease. Finally, numerical simulations verify the stability of the system and the effectiveness of the optimal control strategy.</p></abstract>


2020 ◽  
Vol 30 (04) ◽  
pp. 2050053
Author(s):  
Mainul Hossain ◽  
Nikhil Pal ◽  
Sudip Samanta ◽  
Joydev Chattopadhyay

In the present paper, we investigate the impact of fear in an intraguild predation model. We consider that the growth rate of intraguild prey (IG prey) is reduced due to the cost of fear of intraguild predator (IG predator), and the growth rate of basal prey is suppressed due to the cost of fear of both the IG prey and the IG predator. The basic mathematical results such as positively invariant space, boundedness of the solutions, persistence of the system have been investigated. We further analyze the existence and local stability of the biologically feasible equilibrium points, and also study the Hopf-bifurcation analysis of the system with respect to the fear parameter. The direction of Hopf-bifurcation and the stability properties of the periodic solutions have also been investigated. We observe that in the absence of fear, omnivory produces chaos in a three-species food chain system. However, fear can stabilize the chaos thus obtained. We also observe that the system shows bistability behavior between IG prey free equilibrium and IG predator free equilibrium, and bistability between IG prey free equilibrium and interior equilibrium. Furthermore, we observe that for a suitable set of parameter values, the system may exhibit multiple stable limit cycles. We perform extensive numerical simulations to explore the rich dynamics of a simple intraguild predation model with fear effect.


2021 ◽  
Vol 16 ◽  
pp. 735-754
Author(s):  
Eshetu Dadi Gurmu ◽  
Boka Kumsa Bola ◽  
Purnachandra Rao Koya

In this study, a nonlinear deterministic mathematical model of Human Papillomavirus was formulated. The model is studied qualitatively using the stability theory of differential equations. The model is analyzed qualitatively for validating the existence and stability of disease ¬free and endemic equilibrium points using a basic reproduction number that governs the disease transmission. It's observed that the model exhibits a backward bifurcation and the sensitivity analysis is performed. The optimal control problem is designed by applying Pontryagin maximum principle with three control strategies viz. prevention strategy, treatment strategy, and screening strategy. Numerical results of the optimal control model reveal that a combination of prevention, screening, and treatment is the most effective strategy to wipe out the disease in the community.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xi Huo ◽  
Jing Chen ◽  
Shigui Ruan

Abstract Background The COVID-19 outbreak in Wuhan started in December 2019 and was under control by the end of March 2020 with a total of 50,006 confirmed cases by the implementation of a series of nonpharmaceutical interventions (NPIs) including unprecedented lockdown of the city. This study analyzes the complete outbreak data from Wuhan, assesses the impact of these public health interventions, and estimates the asymptomatic, undetected and total cases for the COVID-19 outbreak in Wuhan. Methods By taking different stages of the outbreak into account, we developed a time-dependent compartmental model to describe the dynamics of disease transmission and case detection and reporting. Model coefficients were parameterized by using the reported cases and following key events and escalated control strategies. Then the model was used to calibrate the complete outbreak data by using the Monte Carlo Markov Chain (MCMC) method. Finally we used the model to estimate asymptomatic and undetected cases and approximate the overall antibody prevalence level. Results We found that the transmission rate between Jan 24 and Feb 1, 2020, was twice as large as that before the lockdown on Jan 23 and 67.6% (95% CI [0.584,0.759]) of detectable infections occurred during this period. Based on the reported estimates that around 20% of infections were asymptomatic and their transmission ability was about 70% of symptomatic ones, we estimated that there were about 14,448 asymptomatic and undetected cases (95% CI [12,364,23,254]), which yields an estimate of a total of 64,454 infected cases (95% CI [62,370,73,260]), and the overall antibody prevalence level in the population of Wuhan was 0.745% (95% CI [0.693%,0.814%]) by March 31, 2020. Conclusions We conclude that the control of the COVID-19 outbreak in Wuhan was achieved via the enforcement of a combination of multiple NPIs: the lockdown on Jan 23, the stay-at-home order on Feb 2, the massive isolation of all symptomatic individuals via newly constructed special shelter hospitals on Feb 6, and the large scale screening process on Feb 18. Our results indicate that the population in Wuhan is far away from establishing herd immunity and provide insights for other affected countries and regions in designing control strategies and planing vaccination programs.


2021 ◽  
Vol 8 (4) ◽  
pp. 783-796
Author(s):  
H. W. Salih ◽  
◽  
A. Nachaoui ◽  

In this work, we study an impulsive mathematical model proposed by Chavez et al. [1] to describe the dynamics of cancer growth and HIV infection, when chemotherapy and HIV treatment are combined. To better understand these complex biological phenomena, we study the stability of equilibrium points. To do this, we construct an appropriate Lyapunov function for the first equilibrium point while the indirect Lyapunov method is used for the second one. None of the equilibrium points obtained allow us to study the stability of the chemotherapeutic dynamics, we then propose a bifurcation of the model and make a study of the bifurcated system which contributes to a better understanding of the underlying biochemical processes which govern this highly active antiretroviral therapy. This shows that this mathematical model is sufficiently realistic to formulate the impact of this treatment.


2021 ◽  
Author(s):  
Marcelo Eduardo Borges ◽  
Leonardo Souto Ferreira ◽  
Silas Poloni ◽  
Ângela Maria Bagattini ◽  
Caroline Franco ◽  
...  

Among the various non–pharmaceutical interventions implemented in response to the Covid–19 pandemic during 2020, school closures have been in place in several countries to reduce infection transmission. Nonetheless, the significant short and long–term impacts of prolonged suspension of in–person classes is a major concern. There is still considerable debate around the best timing for school closure and reopening, its impact on the dynamics of disease transmission, and its effectiveness when considered in association with other mitigation measures. Despite the erratic implementation of mitigation measures in Brazil, school closures were among the first measures taken early in the pandemic in most of the 27 states in the country. Further, Brazil delayed the reopening of schools and stands among the countries in which schools remained closed for the most prolonged period in 2020. To assess the impact of school reopening and the effect of contact tracing strategies in rates of Covid–19 cases and deaths, we model the epidemiological dynamics of disease transmission in 3 large urban centers in Brazil under different epidemiological contexts. We implement an extended SEIR model stratified by age and considering contact networks in different settings – school, home, work, and elsewhere, in which the infection transmission rate is affected by various intervention measures. After fitting epidemiological and demographic data, we simulate scenarios with increasing school transmission due to school reopening. Our model shows that reopening schools results in a non–linear increase of reported Covid-19 cases and deaths, which is highly dependent on infection and disease incidence at the time of reopening. While low rates of within[&ndash]school transmission resulted in small effects on disease incidence (cases/100,000 pop), intermediate or high rates can severely impact disease trends resulting in escalating rates of new cases even if other interventions remain unchanged. When contact tracing and quarantining are restricted to school and home settings, a large number of daily tests is required to produce significant effects of reducing the total number of hospitalizations and deaths. Our results suggest that policymakers should carefully consider the epidemiological context and timing regarding the implementation of school closure and return of in-person school activities. Also, although contact tracing strategies are essential to prevent new infections and outbreaks within school environments, our data suggest that they are alone not sufficient to avoid significant impacts on community transmission in the context of school reopening in settings with high and sustained transmission rates.


2000 ◽  
Vol 15 (1) ◽  
pp. 43-56
Author(s):  
Michael Spaulding

Globalization pits pressures for liberalization against state claims to political and economic sovereignty. Less powerful states in particular face strong pressure from the international trade regime to liberalize their economies irrespective of the impact on domestic stability and national goals. East Asia has been a hold-out against the global trend toward liberalization. This paper shows that the bail-out package demanded by the IMF in 1997 during the East Asian financial crisis imposed unprecedented restrictions on state governance without regard for long-term implications. The paper argues that the IMF's motivation was to harmonize financial governance of the affected economies with Western practices. However, the cost of this initiative to the stability of the region has been overlooked. The East Asian region has carved out for itself a unique niche in the international political economy by resisting penetration of Western finance capital. Already governments have fallen and deep resentments have been sewn over the reversal. More seriously for the future, assumptions that free-market liberalism can be imposed top-down ignore the extent to which economic institutions and preferences are embedded in culture.


2019 ◽  
Vol 5 (3) ◽  
pp. eaau9875 ◽  
Author(s):  
E. Ezcurra ◽  
E. Barrios ◽  
P. Ezcurra ◽  
A. Ezcurra ◽  
S. Vanderplank ◽  
...  

We tested how sediment trapping by hydroelectric dams affects tropical estuaries by comparing two dammed and two undammed rivers on Mexico’s Pacific coast. We found that dams demonstrably affected the stability and productivity of the estuaries. The two rivers dammed for hydroelectricity had a rapid coastal recession (between 7.9 and 21.5 ha year−1) in what should otherwise be an accretional coastline. The economic consequences of this dam-induced coastal erosion include loss of habitat for fisheries, loss of coastal protection, release of carbon sequestered in coastal sediments, loss of biodiversity, and the decline of estuarine livelihoods. We estimate that the cost of the environmental damages a dam can cause in the lower part of basin almost doubles the purported benefits of emission reductions from hydroelectric generation.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Meriem Bentounsi ◽  
Imane Agmour ◽  
Naceur Achtaich ◽  
Youssef El Foutayeni

We define and study a tritrophic bioeconomic model of Lotka-Volterra with a prey, middle predator, and top predator populations. These fish populations are exploited by two fishermen. We study the existence and the stability of the equilibrium points by using eigenvalues analysis and Routh-Hurwitz criterion. We determine the equilibrium point that maximizes the profit of each fisherman by solving the Nash equilibrium problem. Finally, following some numerical simulations, we observe that if the price varies, then the profit behavior of each fisherman will be changed; also, we conclude that the price change mechanism improves the fishing effort of the fishermen.


2020 ◽  
Vol 12 (1) ◽  
pp. 120-127
Author(s):  
Vinod Baniya ◽  
Ram Keval

Mathematical modeling of Japanese encephalitis (JE) disease in human population with pig and mosquito has been presented in this paper. The proposed model, which involves three compartments of human (Susceptible, Vaccinated, Infected), two compartments of mosquito (Susceptible, Infected) and three compartments of the pig (Susceptible, Vaccinated, Infected). In this work, it is assumed that JE spreads between susceptible class and infected mosquitoes only. Basic results like boundedness of the model, the existence of equilibrium and local stability issues are investigated. Here, to measure the disease transmission potential in the population the basic reproduction number (R0) from the system has been analyzed w.r.t. control parameters both numerically and theoretically. The dynamical behaviors of the system have been analyzed by using the stability theory of differential equations and numerical simulations at equilibrium points. A numerical verification of results is carried out of the model under consideration.


Sign in / Sign up

Export Citation Format

Share Document