Durability Properties of Concrete with M-Sand As Fine Aggregate Incorporating with Acrylic Fiber

Author(s):  
Dr. M. Devi ◽  
S. Shyamala Rubini ◽  
M. Tharageshwari ◽  
M. Sri Megala, G. Soundarya ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
Mehmet Gesoglu ◽  
Erhan Güneyisi ◽  
Hatice Öznur Öz ◽  
Mehmet Taner Yasemin ◽  
Ihsan Taha

This paper addresses durability and shrinkage performance of the self-compacting concretes (SCCs) in which natural coarse aggregate (NCA) and/or natural fine aggregate (NFA) were replaced by recycled coarse aggregate (RCA) and/or recycled fine aggregate (RFA), respectively. A total of 16 SCCs were produced and classified into four series, each of which included four mixes designed with two water to binder (w/b) ratios of 0.3 and 0.43 and two silica fume replacement levels of 0 and 10%. Durability properties of SCCs were tested for rapid chloride penetration, water sorptivity, gas permeability, and water permeability at 56 days. Also, drying shrinkage accompanied by the water loss and restrained shrinkage of SCCs were monitored over 56 days of drying period. Test results revealed that incorporating recycled coarse and/or fine aggregates aggravated the durability properties of SCCs tested in this study. The drying shrinkage and restrained shrinkage cracking of recycled aggregate (RA) concretes had significantly poorer performance than natural aggregate (NA) concretes. The time of cracking greatly prolonged as the RAs were used along with the increase in water/binder ratio.


2017 ◽  
Vol 9 (1) ◽  
pp. 52-61 ◽  
Author(s):  
Gireesh MAILAR ◽  
Sujay Raghavendra N. ◽  
Parameshwar HIREMATH ◽  
Sreedhara B. M. ◽  
Manu D. S.

Nowadays, there is a considerable shortage in the availability of river sand and natural stone aggregate for the construction activities all around the globe and the way out is being worked out by the use of discarded foundry sand and crushed brick masonry aggregate for construction purposes. In the present study, river sand was partly replaced by the discarded foundry sand procured from steel moulding industries and the crushed brick masonry aggregate was used as coarse aggregate for the production of lightweight concrete. The experimental program involved casting of six distinct mixes with 0%, 20%, 40%, 60%, 80% & 100% replacement of fine aggregate by discarded foundry sand. The mechanical and durability properties of the lightweight concrete were assessed for each of the six diverse blends. Even though the 80% and 100% replacement mixes were found to be less dense than the rest of the mix, the blend of 40% replacement acquired desirable mechanical and durability properties when compared to that of all other mixes. The optimum replacement level of the discarded foundry sand by mass to the river sand was 40%. The lightweight concrete produced by utilizing crushed brick masonry aggregate and discarded foundry sand (40% substitution level) can be employed in all major structural lightweight construction aspects and is ideally suited for sloped roof slabs and making architectural or decorative concrete blocks.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
G. Ganesh Prabhu ◽  
Jin Wook Bang ◽  
Byung Jae Lee ◽  
Jung Hwan Hyun ◽  
Yun Yong Kim

In recent years, the construction industry has been faced with a decline in the availability of natural sand due to the growth of the industry. On the other hand, the metal casting industries are being forced to find ways to safely dispose of waste foundry sand (FS). With the aim of resolving both of these issues, an investigation was carried out on the reuse of waste FS as an alternative material to natural sand in concrete production, satisfied with relevant international standards. The physical and chemical properties of the FS were addressed. The influence of FS on the behaviour of concrete was evaluated through strength and durability properties. The test results revealed that compared to the concrete mixtures with a substitution rate of 30%, the control mixture had a strength value that was only 6.3% higher, and this enhancement is not particularly high. In a similar manner, the durability properties of the concrete mixtures containing FS up to 30% were relatively close to those of control mixture. From the test results, it is suggested that FS with a substitution rate of up to 30% can be effectively used in concrete production without affecting the strength and durability properties of the concrete.


The degree of this view is to redesign the undertaking capacity of the supportable use of quarry soil, and to discover any gaps in present day-day know-how. The time allotment affordable usage construes the utilization of quarry buildup to their complete capacity to meet the dreams of the overwhelming, on a comparative time as on the vague time keeping up customary resources and finding strategies to restrain the natural impacts related both with quarry fines gathering and use. Solid mixes had been casted the use of standard stream sand and in evaluation with 25%,50%,75%, 100% open entryway with quarry soil in blend with waste plastic in fabriform. . The development of quarry dust near to squander plastic certainly improved the strong structure homes with respect to power and vulnerability block. The development of significant worth quarry dust with ldpe as waste plastic in strong incited impelled system densification in assessment to conventional concrete. System densification has been considered abstractly through petro graphical test using virtual optical microscopy. The shape modified into evaluated using SEM in quarry dust and ldpe composites.


2021 ◽  
Vol 11 (3) ◽  
pp. 71-88
Author(s):  
Piseth Pok ◽  
Parnthep Julnipitawong ◽  
Somnuk Tangtermsirikul

This research investigated the effects of using a substandard fly ash as a partial cement and/or fine aggregate replacement on the basic and durability properties of cement-fly mixtures. Experimental results showed that utilizing the substandard fly ash led to increase in water requirement and autoclave expansion of pastes. The strength activity indexes of the substandard fly ash passed the requirements of TIS 2135 and ASTM C618. Utilization of the substandard fly ash as cement replacement led to higher expansion of mortar bars stored in water and sodium sulfate expansion as compared to that of the OPC mixture. However, sodium sulfate resistance of mortar mixtures improved when utilizing the substandard fly ash as sand replacement material. The compressive strength of concrete at all ages was higher with the increase of the content of the substandard fly ash as sand replacement material. When the substandard fly ash was used as cement replacement material in concrete, the carbonation depth increased. On the other hand, the use of the substandard fly ash as sand replacement material decreased the carbonation depth of the concrete. Utilization of the substandard fly ash, both to replace cement and/or fine aggregate, reduced the rapid chloride penetration of the concrete.


2021 ◽  
Vol 20 (2) ◽  
pp. 359-370
Author(s):  
S. Jagan ◽  
◽  
T. R. Neelakantan ◽  
R. Gokul Kannan ◽  
◽  
...  

Increased development in the field of construction with the use of sand, stones etc. depletes the natural resources and thus resulted in the scarcity of construction materials. Furthermore, generation of waste from several industries such as steel slag, copper slag, blast furnace slag etc. are being dumped in the nearby landfills leading to disposal problems. The scarcity of construction materials necessitated the utilization of suitable alternative materials with equivalent physical and chemical characteristics. This paper investigates the suitability of copper slag (CS) as a substitute to natural fine aggregate (NFA) in the concrete. The concrete mixes are prepared with 0%, 10%, 30%, 50%, 70% and 100% of copper slag at 0.45 w/c ratio. The behaviour of CS in the concrete was assessed by hardened properties such as compression, tension and flexure at 7, 14, 28 and 90 days and durability properties such as water absorption, porosity and chloride ion penetration at 56 days. Results indicate that the replacement of CS beyond 50% affects properties of the concrete; however increased curing improved the properties of the concrete at higher replacement levels. Characterization studies such as XRD and SEM was performed to examine the effect of CS on the properties of the concrete.


The river sand is the natural sort of fine aggregate material which is employed within the concrete and mortar. It’s usually obtained from the river bed and mining has disastrous environment consequences. Rather than the river sand we are using M-sand as fine aggregate within the concrete. The event of acrylic concrete marks a crucial milestone in improving the merchandise quality and efficiency of the concrete. Usage of acrylic within the concrete will increase the strength and durability of the concrete. It enhances the performance of the concrete and increase energy absorption compared with plain concrete. Within the present work we are getting to analysis the strength properties of fiber reinforced M-sand concrete like compressive strength, flexural strength, split tensile strength, and bond strength.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 645 ◽  
Author(s):  
Sakthieswaran Natarajan ◽  
Nagendran Neelakanda Pillai ◽  
Sophia Murugan

This paper deals with the experimental studies conducted on the effects of using sea sand on the properties of polymer concrete modified using epoxy resin. The physical properties including workability, mechanical properties, and durability properties were evaluated as a function of sea-sand substitution. The results obtained behave as strong evidence for the feasibility of using sea sand as fine aggregate to solve the problem associated with the exhaustion of natural aggregates when used in combination with epoxy polymer. A clear understanding of the behavior of polymer concrete with sea sand as aggregate was obtained through some preliminary investigations. The test results showed a significant improvement in the compressive and flexural strength due to the sea-sand substitution in polymer concrete. Resistance to the water intrusion was also improved for the concrete mixes due to the inclusion of epoxy resin. The quality and the integrity of the concrete were also improved,as evident from the SEM analysis and infrared (IR) spectroscopy, and the results function as solid basis for the use of sea-sand polymer-modified concrete for practical applications. Results also show that 15% replacement of fine aggregate by sea sand in air-cured polymer concrete exhibited enhanced strength and durability properties; thus, the produced concrete can be an effective material for unreinforced concrete applications.


Sign in / Sign up

Export Citation Format

Share Document