scholarly journals SUSTAINABLE UTILIZATION OF DISCARDED FOUNDRY SAND AND CRUSHED BRICK MASONRY AGGREGATE IN THE PRODUCTION OF LIGHTWEIGHT CONCRETE

2017 ◽  
Vol 9 (1) ◽  
pp. 52-61 ◽  
Author(s):  
Gireesh MAILAR ◽  
Sujay Raghavendra N. ◽  
Parameshwar HIREMATH ◽  
Sreedhara B. M. ◽  
Manu D. S.

Nowadays, there is a considerable shortage in the availability of river sand and natural stone aggregate for the construction activities all around the globe and the way out is being worked out by the use of discarded foundry sand and crushed brick masonry aggregate for construction purposes. In the present study, river sand was partly replaced by the discarded foundry sand procured from steel moulding industries and the crushed brick masonry aggregate was used as coarse aggregate for the production of lightweight concrete. The experimental program involved casting of six distinct mixes with 0%, 20%, 40%, 60%, 80% & 100% replacement of fine aggregate by discarded foundry sand. The mechanical and durability properties of the lightweight concrete were assessed for each of the six diverse blends. Even though the 80% and 100% replacement mixes were found to be less dense than the rest of the mix, the blend of 40% replacement acquired desirable mechanical and durability properties when compared to that of all other mixes. The optimum replacement level of the discarded foundry sand by mass to the river sand was 40%. The lightweight concrete produced by utilizing crushed brick masonry aggregate and discarded foundry sand (40% substitution level) can be employed in all major structural lightweight construction aspects and is ideally suited for sloped roof slabs and making architectural or decorative concrete blocks.

This paper presents an experimental investigation on the properties of concrete in which like cement is partially replacing by used nano silica and is partially replacing by used waste foundry sand. Because now a day the world wide consumption of sand as cement and as fine aggregate in concrete production is very high. Nano silica and waste foundry sand are major by product of casting industry and create land pollution. The cement will be replaced with nano silica and the river sand will be replaced with waste foundry sand (0%, 5%, 10%, 15%, 20%). This experimental investigation was done and found out that with the increase in the nano silica and waste foundry sand ratio. Compression test has been done to find out the compressive strength of concrete at the age of 7, 14, 21, and 28. Test result indicates in increasing compressive strength of plain concrete by inclusion of nano silica as a partial replacement of cement and waste foundry sand as a partial replacement of fine aggregate.


2021 ◽  
Author(s):  
Herbet Alves Oliveira

Lightweight concrete has as main characteristic its low density due to the incorporation of light materials such as expanded clay, or even the incorporation of air whose function is to reduce the density, characteristic of cellular concrete. In Aracaju city, there are companies that promote tire reconditioning, generating large amounts of waste dust. The aim of this work is to study the reuse of tire rubber waste in light concrete from expanded clay. An experimental program was developed for the analysis of these concretes, varying the percentage of 1%, 2.5% and 5% of the tire rubber waste to replace the natural fine aggregate and 100% replacing the natural coarse aggregate by expanded clay (50% of expanded clay C1506 and 50% of C2215). The materials (cement, sand, expanded clays and tire rubber waste) were characterized through tests of particle size analysis and unit mass. The hardened concrete was evaluated through mechanical tests of axial compression strength, modulus of elasticity and tensile strength by diametrical compression, physical tests of water absorption and specific mass, in addition to image analysis by scanning electron microscopy. The use of expanded clay with incorporation of 1% of tire rubber waste guaranteed better results in mechanical resistance, lower water absorption and greater specific mass than the mixtures with 2.5 and 5%, reaching values close to the reference concrete. Thus, the residue can be an alternative for reuse, avoiding disposal.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
G. Ganesh Prabhu ◽  
Jin Wook Bang ◽  
Byung Jae Lee ◽  
Jung Hwan Hyun ◽  
Yun Yong Kim

In recent years, the construction industry has been faced with a decline in the availability of natural sand due to the growth of the industry. On the other hand, the metal casting industries are being forced to find ways to safely dispose of waste foundry sand (FS). With the aim of resolving both of these issues, an investigation was carried out on the reuse of waste FS as an alternative material to natural sand in concrete production, satisfied with relevant international standards. The physical and chemical properties of the FS were addressed. The influence of FS on the behaviour of concrete was evaluated through strength and durability properties. The test results revealed that compared to the concrete mixtures with a substitution rate of 30%, the control mixture had a strength value that was only 6.3% higher, and this enhancement is not particularly high. In a similar manner, the durability properties of the concrete mixtures containing FS up to 30% were relatively close to those of control mixture. From the test results, it is suggested that FS with a substitution rate of up to 30% can be effectively used in concrete production without affecting the strength and durability properties of the concrete.


2021 ◽  
Vol 882 ◽  
pp. 228-236
Author(s):  
Anamika Agnihotri ◽  
Ajay Singh Jethoo ◽  
P.V. Ramana

The mechanical and durability properties were best at 45% GGBS and 5% Waste Glass with 0.4 water/cement ratio. The recycled materials implemented for mix proportion were waste glass provided considerably to enhance its properties when added with GGBS. In most of the research work, the effect of WG and GGBS in concrete as a partial substitution of fine aggregate and cement individually is analyzed. Previous studies only show the individual impact of these concrete recycled materials on mechanical and durability properties. In the present study, an exact optimum substitution level of cement by GGBS (15 – 60% at an increment of 15%) and fine aggregate by the waste glass (5 – 20% at an increase of 5%) combined for OPC concrete mix. Mechanical (compressive strength, split tensile strength and flexural strength) and microstructural properties (FESEM) were observed on the combination of waste glass and GGBS concrete mix.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7420
Author(s):  
Kalyana Chakravarthy Polichetty Raja ◽  
Ilango Thaniarasu ◽  
Mohamed Abdelghany Elkotb ◽  
Khalid Ansari ◽  
C Ahamed Saleel

The demand for natural aggregates (river sand) is increasing day by day, leading to the destruction of the environment, a burden that will be passed on to young people. Further, wastes from various industries are being dumped in landfills, which poses serious environmental problems. In order to ensure sustainability, both the issues mentioned above can be solved by utilizing industrial waste as aggregate replacement in the concrete construction industry. This research is done to find out the results using two substances viz., waste foundry sand (WFS) and coconut shell (CS) substitute for river sand and coarse aggregate. Many researchers have found the maximum benefits of substituted substances used in cement, which has material consistency. This current observation explores these strong waste properties of waste-infused concrete and cement, which experience shrinkage from drying out. The replacement levels for waste foundry sand were varied, between 10%, 20%, and 30%, and for CS, it was 10% and 20%. The experimental outcomes are evident for the strength, which increases by using WFS, whereas the strength decreases by increasing the CS level. The concrete that experiences shrinkage from drying out is included in the waste material, showing a higher magnitude of drying shrinkage than conventional concrete.


Author(s):  
Sangavi D ◽  
Angu Senthil K

A Rise in urbanization and industrialization has led to over utilization of natural river sand, which affects environmental sustainability. Nowadays, due to the massive demand of river sand, M-sand has been replaced effectively and being used in the construction industry. Although M-Sand is desirably used, it can lead to more water and cement requirement to achieve the expected workability which in turn increases the cost of construction. Thus as an alternative solution, industrial by-product like waste foundry sand can be used. When sand can no-longer be reused in the foundry, it is known as waste foundry sand. As it is discarded in a landfill, it tends to pose several environmental impacts. In order to reduce the disposal problem, waste foundry sand is reused in engineering applications. In this paper, various strength and durability properties have been studied, and an overview of some of the research works on the utilization of waste foundry sand in concrete were given. Fine aggregate is replaced with different proportions of waste foundry sand (0-100%). From the results obtained, the optimum % replacement of foundry sand is found to be in the range of 20% to 40% based on the grade of concrete.


2016 ◽  
Vol 718 ◽  
pp. 184-190
Author(s):  
Patcharapol Posi ◽  
Piyawat Foytong ◽  
Pearploy Thongjapo ◽  
Natakorn Thamultree ◽  
Phongsathon Boontee ◽  
...  

In this research, the properties of pressed lightweight fly ash geopolymer concrete block containing Portland cement and recycled lightweight concrete aggregate. The recycled lightweight concrete aggregate (RLCA) was crushed and classified as coarse aggregate (CA), medium aggregate (MA) and fine aggregate (FA). The RLCA with CA : MA : FA of 30 : 30 : 40 by weight was used to reduce the weight of concrete block. Lightweight geopolymer concrete block was produced from lignite fly ash, NaOH, Na2SiO3, RCLA and PC. The lightweight geopolymer concrete blocks with 28-day compressive strengths between 2.0 and 14.1 MPa and densities between 1130 and 1370 kg/m3 were obtained.


2019 ◽  
Vol 8 (3) ◽  
pp. 8354-8358

Self-compacting concrete is also called as self consolidated concrete which does not require vibration for placing and compaction. In the present trend scarcity of natural sand become a huge problem to construction industry, inorder to reduce this problem alternatives are used, one of the alternative material is Manufactured sand. Manufactured sand is produced from hard granite stone by crushing. There are two reasons to M-sand i.e, availability & transportation. An attempt was made to evaluate the workability and strength characteristics & durability properties of self compacting concrete with river sand and manufactured sand as fine aggregates. For each replacement level, constant workability was maintained by varying the dosage of superplasticizer. Sulphate attack and chloride attack of the specimens were determined. Different proportions of solution are used for durability study.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Naga Rajesh Kanta ◽  
Markandeya Raju Ponnada

Purpose In the construction sector, river sand has turned into a costly material due to various reasons. In the current study, used foundry sand (UFS) and spent garnet sand (SGS) are used as a partial and full replacement to sand in concrete production. Design/methodology/approach The objective of the work is to develop non-conventional concrete by replacing river sand with a combination of UFS (constant 20Wt.% replacement) and SGS at various percentages (20, 40, 60 and 80 Wt.%). Findings Compared to conventional concrete, the 28 days compressive strength of non-conventional concrete (with UFS at 20% and spent garnet sand at 20%, 40% and 60% were 8.12%, 6.77% and 0.83% higher, respectively. The 28 days split tensile strength of non-conventional concrete (UFS at 20% and SGS at 20 and 40%) were 32.2% and 51.6% higher, respectively. Research limitations/implications It can be concluded that 60 Wt.% of river sand can be combined replaced with 20 Wt.% UFS and 40 Wt.% SGS to produce good quality concrete whose properties are on par with conventional concrete. Practical implications The results showed that combined SGS and UFS can be used as a partial replacement of river sand in the manufacturing of concrete that is used in all the applications of construction sector such as buildings, bridges, dams, etc. and non-structural applications such as drainpipes, kerbs, etc. Social implications Disposal of industrial by-product wastes such as SGS and UFS affects the environment. A sincere attempt is made to use the same as partial replacement of river sand. Originality/value Based on the literature study, no work is carried out in replacing the river sand combined with SGS and UFS in concrete.


2018 ◽  
Vol 789 ◽  
pp. 131-136
Author(s):  
Purnomo Heru ◽  
Andhika Rizki Yuandry ◽  
Elly Tjahjono

Plastic waste used as coarse aggregates in structural concrete is part of efforts to minimizeenvironmental pollution. It can provide lightweight concrete but with a lower strength compared tonormal concrete. Accordingly, an experimental study of 12 concrete specimens using wastepolypropylene coarse aggregates coated with sand was carried out. Direct tensile tests were conductedto cylinder concrete specimens having diameter of 10 cm and depth of 20 cm respectively. Threemixtures of sand coated polypropylene coarse plastic aggregate, river sand as fine aggregate, waterand Portland Composite Cement with a water-cement ratio of 0.286 were conducted. The massproportion of cement and sand are the same but the mass of plastic coarse aggregates coated withsand is specific for each mixture. Direct tensile strength of the specimens in general shows that highertensile strength is found for specimens having higher compressive strength. From the test results, amodel of direct tensile stress-strain relation is proposed. Finally the direct tensile strength forlightweight concrete using polypropylene coarse aggregate coated with sand is found to be lower thanthe direct tensile strength for normal concrete.


Sign in / Sign up

Export Citation Format

Share Document