Possibilities of using car enamel waste in the production of iron casting

2020 ◽  
pp. 22-26
Author(s):  
I. O. Leushin ◽  
◽  
V. S. Makarov ◽  
L. I. Leushina ◽  
M. A. Geiko ◽  
...  

In the context of the general problem of utilization and recycling of industrial waste, the authors considered the possibility of using two types of waste of paint and varnish products of the GAZ Group of Companies — ML-12 and ML-1110 car enamels in the production of cast iron castings. Both materials are non-viscous liquid — a suspension of pigments in a solution of alkyd and melamine-formaldehyde resins in organic solvents with the addition of a solvent. The annual output of each type of waste at the base enterprise exceeds 500 tons. It was revealed that the solvent, xylene, butanol, as well as butyl acetate and white spirit, present in the composition of both types of waste and having a total share of more than 50%, are flammable liquids of organic nature with properties of solvents with a mass density lower than the density of water. Carboncontaining substances and titanium dioxide were found in the composition of the car enamel pigment. The complex of physical and operational properties of auto enamels generally meets the requirements for parting coatings and foundry paints used in the production of cast iron castings. The prerequisites for conducting assessments and making a technical decision are described in detail, the results of the program implementation are analyzed. An experimental test of the operability of the selected options for the use of waste materials was carried out in conditions of the existing production. The studies carried out have confirmed the feasibility of assessing the potential of industrial waste for recycling, which makes it possible to reduce the volume of consumed primary materials, reduce the cost of production and the environmental burden. It was recommended the enterprise to consider the possibility of using waste of ML-12 and ML-1110 auto enamels as a parting coating for foundry metal models, and use the waste of ML-12 auto enamel for painting casting molds in the production of iron casting.

2020 ◽  
Vol 299 ◽  
pp. 634-640
Author(s):  
Y.A. Svinoroev ◽  
Valery V. Dyadichev ◽  
O.A. Ternovskiy

The work investigated the possibility of using the technical lingo-sulfonate as a binder for the manufacture of small cores by blow-off methods in the production of shaped cast-iron casting, similar to the dominant at the present time Cold-Box-Amin process. It is shown that the advantage of lignin materials is their safety, manifested both in the workplace - directly in the foundry, and in ensuring environmental cleanliness in the area of the location of such production. It is indicated that, when switching to the proposed lignin materials, the price of binders can be reduced by two orders of magnitude. Experimental compositions of mixtures are proposed, and their tests are carried out. The quantitative characteristics of the composition of the sand-oligo-sulfonate mixture are established. As a result, a pilot batch of rods was produced, and high-quality shaped cast iron castings were made. Special attention is paid to the demand to develop the specialized equipment, focused on lignin binders.


2021 ◽  
Vol 1781 (1) ◽  
pp. 012050
Author(s):  
A Josan ◽  
E Ardelean ◽  
M Ardelean ◽  
V Puţan

2014 ◽  
Vol 59 (3) ◽  
pp. 1037-1040 ◽  
Author(s):  
I. Vasková ◽  
M. Hrubovčáková ◽  
J. Malik ◽  
Š. Eperješi

Abstract Ductile cast iron (GS) has noticed great development in last decades and its boom has no analogue in history humankind. Ductile iron has broaden the use of castings from cast iron into areas, which where exclusively domains for steel castings. Mainly by castings, which weight is very high, is the propensity to shrinkage creation even higher. Shrinkage creation influences mainly material, construction of casting, gating system and mould. Therefore, the main realized experiment was to ascertain the influence of technological parameters of furane mixture on shrinkage creation in castings from ductile iron. Together was poured 12 testing items in 3 moulds forto determine and compare the impact of various technological parameters forms the propensity for shrinkage in the casting of LGG.


2021 ◽  
Vol 303 ◽  
pp. 01005
Author(s):  
Dmitry Lubyanoi ◽  
Evgeny Pudov ◽  
Evgeny Kuzin ◽  
Olga Semenova

The article shows the relevance of the use of alloyed cast iron in mining and metallurgical engineering. The article discusses the technologies for producing naturally alloyed cast iron. For working bodies and friction units of mining machines, such as pumps, coal pumps, hydrocyclones, crushers and mills. The main type of wear for them is abrasive. To increase the wear resistance of cast iron the production of cast iron has not been sufficiently studied yet. Although the use of cast iron in a complex alloyed with manganese, silicon, chromium, titanium and vanadium has been studied. The article studies the influence of manganese, titanium and vanadium on the mechanical properties and performance of machine parts and products of mining and metallurgical production in contact with high-temperature and highly abrasive media. The rational content of titanium and vanadium in gray cast irons is established in the range of 0.05-0.1%, which ensures their heat resistance and increases their wear resistance. The content of these elements can be increased to 0.07-0.12%. Bushings made of this cast iron have the required wear resistance and can increase the operational reliability of the equipment in the conditions of mining and metallurgical production. They also replace non-ferrous metals, as well as products obtained by powder metallurgy methods.


2016 ◽  
Vol 16 (3) ◽  
pp. 157-161 ◽  
Author(s):  
M. Hrubovčáková ◽  
I. Vasková ◽  
M. Benková ◽  
M. Conev

Abstract The main bulk density representation in the molding material is opening material, refractory granular material with a particle size of 0.02 mm. It forms a shell molds and cores, and therefore in addition to activating the surface of the grain is one of the most important features angularity and particle size of grains. These last two features specify the porosity and therefore the permeability of the mixture, and thermal dilatation of tension from braking dilation, the thermal conductivity of the mixture and even largely affect the strength of molds and cores, and thus the surface quality of castings. [1] Today foundries, which use the cast iron for produce of casts, are struggling with surface defects on the casts. One of these defects are veining. They can be eliminated in several ways. Veining are foundry defects, which arise as a result of tensions generated at the interface of the mold and metal. This tension also arises due to abrupt thermal expansion of silica sand and is therefore in the development of veining on the surface of casts deal primarily influences and characteristics of the filler material – opening material in the production of iron castings.


Author(s):  
N. I. Gabelchenko ◽  
N. A. Kidalov ◽  
A. A. Belov ◽  
M. D. Bezmogorychnyy ◽  
A. I. Gabelchenko

The work is devoted to the study of the effect of slowing down the cooling rate in the interval of eutectic transformation on the structure and mechanical properties of castings from gray doeutectic iron. To slow down the cooling rate in the interval of eutectic transformation, an exothermic carbon-containing additive, fuel oil M-100, was used. It is shown that the use of controlled cooling can significantly increase the quality index of cast iron without introducing additional alloying elements into the composition of cast iron.


2019 ◽  
Vol 946 ◽  
pp. 696-701
Author(s):  
Viktor A. Kukartsev ◽  
Vladislav V. Kukartsev ◽  
Vadim S. Tynchenko

In the transition to modern high intensive processes of smelting there had been reversed technologies structures to get carbon content in cast iron. A re-carburizing agent, that can be one of the most significant reasons of occurrence of defects of the cast, and deformed metal and decrease of the level of properties have been identified. There was not only made the decarburizing agent of modern technology of production of pig-iron essential element (particularly synthetic), but also resulted in many of variants of its realization from the standpoint of level decarburizing, type, using re-carburizing method of decarburizing technological phase, where enter of carbonaceous materials. Particularly sharply process of execution re-carburizing influences receipt of synthetic pig-iron in induction crucible furnaces of industrial frequency from metal works, which contained 80-90% of steel breakage. Then, it is necessary to raise the content of carbon from 0,3 to 3,0-3,8% (depending on the pig-iron mark). It forces foundry enterprises to approach with big care at a choice of existing materials, which it is possible to use as decarburizing and to verify carefully, which is appearing at the market. In work application there are considered variants of using carbon-carbide-silicon mixture UKKS-31 at melting of grey pig-iron in induction, crucible furnaces, intended for pig-iron melting. The cost comparison is presented between traditional technology and with using mix UKKS-31.


2020 ◽  
Vol 998 ◽  
pp. 36-41
Author(s):  
Peter Futaš ◽  
Alena Pribulová ◽  
Marcela Pokusova

Modern metal melting includes of cast iron production in different types furnaces with specific characteristics. Furnaces usually adopted are cupola and induction furnaces. Casting cast iron is a manufacturing process characterized by its energy-intensive nature (ie, the use of large amounts of energy per unit of product for main activities) and a long tradition. An example of the energy balance in a foundry is the design of procedures to reduce energy consumption. The most important is the consumption of energy in the production of hot metals (52%), therefore reducing the cost of preparing hot metal is especially important by reducing the energy consumption of metal melting. The most important energy cost practices are the consumption of hot metal to produce 1mt of high quality castings (often 1700 kg) and reduce the energy consumption of hot metal production that varies over a wide range (from 500 to 1300 kWh/mt). Although scientific and technological aspects are now well established, new studies seem to be needed to describe "foundry of the future", where energy and material efficiency is of great importance to ensure competitiveness alongside environmental protection. The paper presents specific procedures for reducing both economically important indicators in cupola and electric induction furnaces.


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 649
Author(s):  
Marcin Górny ◽  
Magdalena Kawalec ◽  
Gabriela Sikora ◽  
Ewa Olejnik ◽  
Hugo Lopez

This paper considers the most important quality factors in processing spheroidal graphite cast iron; namely, primary grains and graphite nodules in thin-walled ductile iron castings (TWDI). In the present study, the effect of grain refinement (by means of Ti, Nb and Zr) and of the holding time after spheroidization and inoculation on effecting the primary grains and eutectic structure in TWDI castings was investigated. Moreover, metallographic examinations (including electron backscattering diffraction, EBSD) were carried out to reveal the macro- and micro-structural features during the primary and eutectic solidification of the cast iron. EBSD results indicate that, within a single dendritic grain, there are numerous boundaries that split the grain into numerous smaller areas. In particular, it is found that the graphite nodules are in contact with the boundaries inside the primary dendritic grain. In turn, crystallization of highly branched dendrites is observed, which seems to “push” the graphite nodules into the interdendritic regions during their growth. The present work investigates the dominant mechanism that gives rise to the primary spheroidal graphite cast iron (SGI) structure. In addition, this work shows that the melt quality is closely associated with the resultant morphology and number of austenite dendrites, graphite nodules, and matrix structure.


Sign in / Sign up

Export Citation Format

Share Document