Prediction of hydrogeomechanical processes in undermining of water bodies

2021 ◽  
pp. 73-79
Author(s):  
K. N. Trubetskoy ◽  
N. A. Miletenko

Rivers, arable land, engineering structures, urban buildings, and communications often fall into the zone of influence of mining operations. Insufficiently justified mining development often leads to negative environmental and social consequences of the violation or destruction of these objects. On the other hand, surface and underground waters often complicate the development of minerals, negatively affecting the safety of production. The paper deals with the interaction of hydrogeological and geomechanical processes near water bodies in complex mining and hydrogeological conditions. One field of research is based on the development of an engineering approach to the analysis of the interaction of hydrogeological and deformation processes. In this case, the results of instrumental field observations and experience of mining operations near water bodies are used. In this approach, it is assumed that six zones can be distinguished in the under-worked rock mass: collapsed rock; through cracks; partially through cracks; individual cracks that do not form a single system; the zone without discontinuities of continuity; the zone of high stresses and compression deformations. As an example of the application of this approach, the development of a mineral deposit under a river is considered and recommendations are made for the preservation of the earth’s surface from waterlogging. The second field of research is related to mathematical modeling and the use of crack theory. The results of the simulation showed that a spontaneous hydraulic fracturing crack may develop in the underworked rock mass, which can serve as a main channel for the penetration of underground or surface water into the mine workings. The nature of spontaneous hydraulic fracturing of rocks is determined by the fact that when a man-made impact on the rock mass, one of the main stresses of the rock mass can become less than the hydrostatic pressure of water. In this case, a hydraulic fracturing crack develops in the area where this condition is met. As an example, the breakthrough of water from a surface reservoir into an underground mine is considered. It is shown that at a low crack resistance of rocks, it is possible for a crack to grow into the mine, which may result in a sudden water breakthrough. The acquired knowledge expands the scientific basis for the development of appropriate supplements to the instructions for mining operations under water bodies.

2013 ◽  
Vol 35 (1) ◽  
pp. 183-194 ◽  
Author(s):  
Witold Pytel ◽  
Joanna Świtoń

Abstract Recognition of properties of the rock mass surrounding a mineral deposit is particularly important for the mining operations at greater depths. Since the rock mass is usually not homogeneous, and its parameters have characteristics of randomness, underground workings safety issue should always be analysed taking into account the dispersion of the values of these parameters around their mean values. In order to assess the impact of geotechnical parameters uncertainty on the excavation stability one uses the appropriate statistical approach. In this paper, by analysing successive combinations of geomechanical parameters of the rock in the measured range, we examined the effect of their variability on risk of underground excavation instability using response surface method.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 562
Author(s):  
Marek Jendryś ◽  
Andrzej Hadam ◽  
Mateusz Ćwiękała

The following article analyzes the effectiveness of directional hydraulic fracturing (DHF) as a method of rock burst prevention, used in black coal mining with a longwall system. In order to define changes in seismic activity due to DHF at the “Rydułtowy” Black Coal Mine (Upper Silesia, Poland), observations were made regarding the seismic activity of the rock mass during coal mining with a longwall system using roof layers collapse. The seismic activity was recorded in the area of the longwall itself, where, on a part of the runway, the rock mass was expanded before the face of the wall by interrupting the continuity of the rock layers using DHF. The following article presents measurements in the form of the number and the shock energy in the area of the observed longwall, which took place before and after the use of DHF. The second part of the article unveils the results of numerical modeling using the discrete element method, allowing to track the formation of goafs for the variant that does not take DHF into consideration, as well as with modeled fractures tracing DHF carried out in accordance with the technology used at “Rydułtowy” coal mine.


2021 ◽  
Vol 13 (8) ◽  
pp. 4341
Author(s):  
Laima Česonienė ◽  
Daiva Šileikienė ◽  
Vitas Marozas ◽  
Laura Čiteikė

Twenty-six water bodies and 10 ponds were selected for this research. Anthropogenic loads were assessed according to pollution sources in individual water catchment basins. It was determined that 50% of the tested water bodies had Ntotal values that did not correspond to the good and very good ecological status classes, and 20% of the tested water bodies had Ptotal values that did not correspond to the good and very good ecological status classes. The lake basins and ponds received the largest amounts of pollution from agricultural sources with total nitrogen at 1554.13 t/year and phosphorus at 1.94 t/year, and from meadows and pastures with total nitrogen at 9.50 t/year and phosphorus at 0.20 t/year. The highest annual load of total nitrogen for lake basins on average per year was from agricultural pollution from arable land (98.85%), and the highest total phosphorus load was also from agricultural pollution from arable land (60%).


Author(s):  
E. Yu. Kulikova ◽  
Ju. A. Sergeeva

One of the problems of functioning of coal industry enterprises is the formation of mine waters, which are discharged into water bodies and cause their dangerous pollution. The total volume of water pumped by the enterprise includes up to 15 % for the recycling cycle, the remaining 85% is discharged to surface water bodies. As a result, the ecological balance of coal regions is disturbed, their sanitary and hygienic state on the environment worsens, and the quality of coal is reduced due to the intake of polluted water for technological operations. The volume of mine water contamination increases during mining operations at deeper horizons and in difficult mining and hydrogeological conditions. In turn, this leads to pollution and depletion of underground aquifers and the formation of environmental risk factors. In Kuzbass, all these factors contribute to the development of water crisis, since the state of surface reservoirs has already reached a critical limit. Especially dangerous is the process of liquidation of mines. Closing mines and sections disrupt natural water flows, resulting in all water from the aquifers going to deeper horizons. More pollutants enter the water, which poison the underground hydrosphere of the regions. The paper analyzes the pollutants entering the underground and surface hydro grid at coal-fired plants and offers a Conceptual model for minimizing the risk of water pollution.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
T. Yang ◽  
Q. S. Ye

Constitutive effect is extremely important for the research of the mechanical behavior of surrounding rock in hydraulic fracturing engineering. In this paper, based on the triaxial test results, a new elastic-peak plastic-softening-fracture constitutive model (EPSFM) is proposed by considering the plastic bearing behavior of the rock mass. Then, the closed-form solution of a circular opening is deduced with the nonassociated flow rule under the cavity expansion state. Meanwhile, the parameters of the load-bearing coefficient and brittles coefficient are introduced to describe the plastic bearing capacity and strain-softening degrees of rock masses. When the above two parameters take different values, the new solution of EPSFM can be transformed into a series of traditional solutions obtained based on the elastic-perfectly plastic model (EPM), elastic-brittle plastic model (EBM), elastic-strain-softening model (ESM), and elastic-peak plastic-brittle plastic model (EPBM). Therefore, it can be applied to a wider range of rock masses. In addition, the correctness of the solution is validated by comparing with the traditional solutions. The effect of constitutive relation and parameters on the mechanical response of rock mass is also discussed in detail. The research results show that the fracture zone radii of circular opening presents the characteristic of EBM > EPBM > ESM > EPSFM; otherwise, it is on the contrast for the critical hydraulic pressure at the softening-fracture zone interface; the postpeak failure radii show a linear decrease with the increase of load-bearing coefficients or a nonlinear increase with the increasing brittleness coefficient. This study indicates that the rock mass with a certain plastic bearing capacity is more difficult to be cracked by hydraulic fracturing; the higher the strain-softening degree of rock mass is, the easier it is to be cracked. From a practical point of view, it provides very important theoretical values for determining the fracture range of the borehole and providing a design value of the minimum pumping pressure in hydraulic fracturing engineering.


2020 ◽  
Vol 12 (3) ◽  
pp. 444-453
Author(s):  
Igor SOKOLOV ◽  
◽  
Yury ANTIPIN ◽  
Artem ROZHKOV ◽  
◽  
...  

The purpose work. Substantiation and selection of a safe and effective option of mining technology of the experimental block in the pilot industrial mining of the Skalistoe deposit. Method of research. Analysis and synthesis of project solutions, experience in mining inclined low-thickness ore bodies, economic and mathematical modeling and optimization of the parameters of options mining systems in the conditions of the experimental block. Results of research. As a result of research it was established: - the sublevel caving mining system with the parameters adopted in the project does not guarantee the completeness of the extraction of reserves and the effectiveness of mining operations. Project indicators of extraction by sublevel caving technology with frontal ore drawing are overestimated and difficult to achieve in these geological and technical conditions (combination of low thickness and angle of ore body); project scheme for the delivery and transportation of rock mass seems impractical due to the significant volume of heading workings and increased transportation costs; - eight technically rational options of various mining systems were constructed, most relevant to the geological and technical conditions of the deposit. Five variants of the sublevel chamber system and pillar caving, a project variant of sublevel caving technology with frontal ore drawing and two options flat-back cut-and-fill system were considered; - for mining the Skalistoe deposit, according to the results of economic and mathematical modeling, optimal by the criterion of profit per 1 ton of balance reserves of ore is a option of the technology of chamber extraction with dual chambers, frontal drawing of ore by remote-controlled load-haul-dump machine and subsequent pillars caving, as having the greatest profit; - the calculations justified stable spans of dual chambers (25.3 m) and the width of panel pillars (3 m). With an allowable span of 25.3 m, the roof of the dual chambers will be stable with a safety factor of 1.41, and a panel pillar with a width of 3 m has a sufficient margin of safety (more than 1.6) in the whole range of ore body thickness variation; - the proposed scheme of delivery and transportation of rock mass, which allows to reduce the volume of tunnel works by 26% and the average length of transportation by 10-15% compared with the project. Findings. Developed in the process of modernization the technology sublevel chamber system with double-chamber, compared with the project technology, it is possible to significantly increase the efficiency of mining of the low thickness deposit of rich ores Skalistoe by reducing the specific volume of preparatory-rifled work by 34%, the cost of mined ore by 12%, losses and ore dilution – by 2 and 2.9 times, respectively.


Acrocephalus ◽  
2018 ◽  
Vol 39 (178-179) ◽  
pp. 71-83
Author(s):  
Dejan Bordjan

Abstract Between 1984 and 2017, 1,388 Black Kites were recorded, mostly in lowlands with 70% of observations made at Dravsko polje. They were observed from sea level to around 1,600 m a.s.l. with an average elevation of 271 m a.s.l. The species was present in Slovenia from mid-March to early December with indistinct spring and autumn migrations. The highest number of observations was recorded in May. The Black Kite was observed in 71 out of 238 10x10 km grid squares in Slovenia (29.8%), with more observations around known breeding sites and at sites with higher observer effort. Both the number of observations and the number of probable and confirmed breeding pairs increased. In 2011–2018, 10 breeding pairs were found at 7 sites (3–7 per year). Additionally, 11 probable breeding pairs at 9 sites (0–6 pairs per year) were found. The breeding population in 2011–2018 is estimated at 10–21 pairs with an average breeding density of 0.3–0.9 breeding pairs per 100 km2. The highest density was recorded at Dravsko polje with 0.6–2.2 breeding pairs per 100 km2. If possible breeding (breeding attempts) were also taken into consideration, the estimate would be up to five breeding pairs higher. The species was recorded at known breeding sites in most years after the breeding was confirmed. Black Kites were observed closer to larger water bodies and to rubbish tips than expected by chance. More Black Kites were recorded in areas with a lower percentage of forest and arable land and a higher percentage of meadows, settlements and wetlands.


2006 ◽  
Vol 306-308 ◽  
pp. 1509-1514 ◽  
Author(s):  
Jing Feng ◽  
Qian Sheng ◽  
Chao Wen Luo ◽  
Jing Zeng

It is very important to study the pristine stress field in Civil, Mining, Petroleum engineering as well as in Geology, Geophysics, and Seismology. There are various methods of determination of in-situ stress in rock mass. However, hydraulic fracturing techniques is the most convenient method to determine and interpret the test results. Based on an hydraulic fracturing stress measurement campaign at an underground liquefied petroleum gas storage project which locates in ZhuHai, China, this paper briefly describes the various uses of stress measurement, details of hydraulic fracturing test system, test procedure adopted and the concept of hydraulic fracturing in arriving at the in-situ stresses of the rock mass.


2012 ◽  
Vol 166-169 ◽  
pp. 2774-2781
Author(s):  
Yong Zhang ◽  
Da Jian Hu ◽  
Lu Xue

In step with body Ⅱ, analytic solution and illustration of elastic energy releasing amount of rock mass dynamic destabilization are given for the first time in the form of precise and approximate catastrophe model. It is upgraded from qualitative understand to quantitative description that study on rock stability at the stage before and after earthquake and rockburst. The halting point’s position of rock mass dynamic destabilization is ascertained strictly, and it offers scientific basis for the calculation on earthquake efficiency, the study on earthquake energy magnitude released, earthquake stress drop, fault offset after earthquake and amount of elastic strain recovery of surrounding rock. The system possesses the capability of applying work to surroundings when it destabilizes, and earthquake wave energy is the work that destabilizing rock system applies to surroundings by way of destructive. The given illustration of elastic energy releasing amount implicates wealth of information, it produces credible evidence for confirming that the mathematical abstract of rock dynamic destabilization is fold catastrophe model.


Author(s):  
S.G. Kirillov ◽  
Z.G. Ufatova ◽  
I.F. Khrushchev ◽  
K.A. Bashirov

The article describes the rock mass state within the boundaries of the Skalistiy mining allotment. The ore mass within the mine field was found to preserve its rock-bump hazard and show high mobility in the impact zone of the Norilsk-Kharaelakh Fault and the associated high failure potential manifested as roof cavings. Based on the monitoring results along underground profile lines, it was concluded that the displacement process is currently at its initial stage. Moreover, the maximum subsidence in the central part of the profile line is about 3 times higher (up to 35 mm) than in other areas. This is caused by immediate proximity of this zone to the Norilsk-Kharaelakh Fault. Assessment of the bump hazard level of this rock mass with the help of the Prognoz-2 instrument that was performed by the rock-bump forecasting and control teams of the mine and the Norilskshakhtstroy company, showed the 'Not Hazardous' category in all cases. However, the progress of mining operations towards the Norilsk-Kharaelakh Fault may lead to deterioration in the condition of mine workings. This can be manifested through rock exfoliation from the walls of the advance workings of the safety layer in highly and extremely faulted rocks. In addition, permanent workings, which are one of the most critical structures of the production level and which will be used until the development of the deposit area adjacent to the Norilsk-Kharaelakh Fault is completed, will be maintained in increasingly difficult conditions. The article describes recommendations for mining operations in the fault area with account for the current mining and geomechanical situation and the potential for its change.


Sign in / Sign up

Export Citation Format

Share Document