Application of Additive Technologies for Manufactoring Non-Electronic Components of Microsystems

2021 ◽  
Vol 23 (4) ◽  
pp. 193-200
Author(s):  
N.K. Tolochko ◽  

It is problematic to apply traditional microtechnologies for the manufacturing three-dimensional (3D) components of microsystems due to a number of inherent disadvantages. It is much more promising to use additive technologies for these purposes. In present paper various additive technologies used for manufacturing non-electronic components of microsystems as well as various non-electronic components manufactured using these technologies are considered. The peculiarities of the implementation of additive technologies in the manufacture of non-electronic microcomponents are discussed. More than 20 types of additive technologies characterized by different principles for the implementation of 3D printing processes are presented and their brief description is given. Most of these technologies allow manufacturing the components with micrometer feature sizes and some of them — with nanometer feature sizes. Microcomponents produced by additive technologies are intended for use in micromechanics, microoptics and microfluidics. Many examples of such microcomponents are given with indication of their typical feature sizes. Additive technologies make it possible to create both individual parts of microdevices and completely finished micro-devices. Microcomponents are mainly made from photopolymers and thermoplastics, as well as metals. Among additive technologies those that provide the multi-material 3D printing as well as the embedding of discrete components into printed microdevices are especially promising. It is expected that in near future additive technologies will be widely used in the production of various non-electronic components of microsystems.

2015 ◽  
Vol 137 (08) ◽  
pp. 42-45
Author(s):  
Mike Vasquez

This article reviews the challenges for companies while adopting three-dimensional (3D) printing technology. A big challenge for companies figuring out whether they need to invest in 3-D printing is the different types of printing systems available in the market. At a high level, there are seven different families of 3-D printing processes. Each of the seven technologies is differentiated by the materials used and how the materials are fused together to create three-dimensional objects. Another barrier is that most companies have not yet found it viable to put the processes in place to incorporate the change in design, engineering, and manufacturing production that is required. Not only capital funds are needed to purchase machines, but to effectively use the technology to create a sellable product, one also needs to have a targeted product line and clear vision of the ways that 3-D printing can help lower material costs, save energy, and simplify manufacturing and assembly.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 124 ◽  
Author(s):  
Mohammad A. Azad ◽  
Deborah Olawuni ◽  
Georgia Kimbell ◽  
Abu Zayed Md Badruddoza ◽  
Md. Shahadat Hossain ◽  
...  

Three dimensional (3D) printing as an advanced manufacturing technology is progressing to be established in the pharmaceutical industry to overcome the traditional manufacturing regime of 'one size fits for all'. Using 3D printing, it is possible to design and develop complex dosage forms that can be suitable for tuning drug release. Polymers are the key materials that are necessary for 3D printing. Among all 3D printing processes, extrusion-based (both fused deposition modeling (FDM) and pressure-assisted microsyringe (PAM)) 3D printing is well researched for pharmaceutical manufacturing. It is important to understand which polymers are suitable for extrusion-based 3D printing of pharmaceuticals and how their properties, as well as the behavior of polymer–active pharmaceutical ingredient (API) combinations, impact the printing process. Especially, understanding the rheology of the polymer and API–polymer mixtures is necessary for successful 3D printing of dosage forms or printed structures. This review has summarized a holistic materials–process perspective for polymers on extrusion-based 3D printing. The main focus herein will be both FDM and PAM 3D printing processes. It elaborates the discussion on the comparison of 3D printing with the traditional direct compression process, the necessity of rheology, and the characterization techniques required for the printed structure, drug, and excipients. The current technological challenges, regulatory aspects, and the direction toward which the technology is moving, especially for personalized pharmaceuticals and multi-drug printing, are also briefly discussed.


Author(s):  
N. Kirillova ◽  
A. Alekseeva ◽  
A. Egorova

Additive technologies that allow creating volume objects of different complexity are becoming popular in different industries. There is an increase in the scale of introduction of 3D printing technologies in the construction industry, including in the production of ceramic products. With the help of modern additive technologies, different models, products and designs are created. They can be complex and can be made from different materials. Experts are wondering what the future holds for additive technologies in construction, as well as in ceramic production, as these technologies can save resources, reduce the time of the technological process and form complex shapes. The article presents an analytical review of the global application of additive technologies in construction, as well as in the manufacture of ceramic products. The advantages and disadvantages, the possibilities of 3D printing are considered. The creation of ceramic three-dimensional products is still a rare area of additive technologies that requires research. The production of ceramic products, superior to other materials in terms of high temperature strength, hardness, chemical and thermal resistance, has a high potential for the use of additive technologies. The types of construction 3D printers and raw materials for them are analyzed. The results of a study of the properties of clay raw materials of the Sannikovsky, Namtsyrsky and Kangalassky deposits of the Republic of Sakha (Yakutia) are presented.


Author(s):  
Anton Viktorovich Yarikov ◽  
Roman Olegovich Gorbatov ◽  
Maksim Vladimirovich Shpagin ◽  
Ilya Igorevich Stolyarov ◽  
Anton Andreevich Denisov ◽  
...  

This article is devoted to the analysis of the possibility of using additive technologies in clinical practice. The number of medical specialties that use 3D printing technologies to treat patients is increasing every year. Thanks to the emergence of high-tech qualified medical care, it is possible to carry out the most complex surgical interventions and give a person who is faced with serious diseases a high-quality and fulfilling life. The creation of a 3D model using the data of a specific patient, the use of 3D computer modeling and additive technologies have become a real breakthrough in many areas of surgery. Today, such an approach in planning reconstructive and restorative operations occupies an important position in modern medicine. The authors of the article presented their experience of using additive 3D printing technologies in clinical practice. The researchers paid special attention to the results of the use of additive technologies in the treatment of diseases of the spine: deformities, degenerative-dystrophic and oncological diseases.


2019 ◽  
Vol 13 (3) ◽  
Author(s):  
Gideon Ukpai ◽  
Joseph Sahyoun ◽  
Robert Stuart ◽  
Sky Wang ◽  
Zichen Xiao ◽  
...  

While three-dimensional (3D) printing of biological matter is of increasing interest, current linear 3D printing processes lack the efficiency at scale required to mass manufacture products made of biological matter. This paper introduces a device for a newly developed parallel additive manufacturing technology for production of 3D objects, which addresses the need for faster, industrial scale additive manufacturing methods. The technology uses multilayer cryolithography (MLCL) to make biological products faster and in larger quantities by simultaneously printing two-dimensional (2D) layers in parallel and assembling the layers into a 3D structure at an assembly site, instead of sequentially and linearly assembling a 3D object from individual elements as in conventional 3D printing. The technique uses freezing to bind the 2D layers together into a 3D object. This paper describes the basic principles of MLCL and demonstrates the technology with a new device used to manufacture a very simple product that could be used for tissue engineering, as an example. An evaluation of the interlayer bonding shows that a continuous and coherent structure can be made from the assembly of distinct layers using MLCL.


Author(s):  
Saigopal Nelaturi ◽  
Walter Kim ◽  
Arvind Rangarajan ◽  
Tolga Kurtoglu

Additive manufacturing, or 3d printing, is the process of building three dimensional solid shapes by accumulating material laid out in sectional layers. Additive manufacturing has been recognized for enabling production of complex custom parts that are difficult to manufacture otherwise. However, the dependence on build orientation and physical limitations of printing processes invariably lead to geometric deviations between manufactured and designed shapes that are usually evaluated after manufacture. In this paper, we formalize the measurement of such deviations in terms of a printability map that simulates the printing process and partitions each printed layer into disjoint regions with distinct local measures of size. We show that manufacturing capabilities such as printing resolution, and material specific design recommendations such as minimal feature sizes may be coupled in the printability map to evaluate expected deviations before manufacture. Furthermore, we demonstrate how partitions with size measures below required resolutions may be modified using properties of the medial axis transform, and use the corrected printability map to construct a representation of the manufactured model. We conclude by discussing several applications of the printability map for additive manufacturing.


2019 ◽  
Vol 1 (2) ◽  
pp. 129-134
Author(s):  
Yulia Andryukhina

Modeling technologies and 3D printing are being introduced into many branches of production, supplementing or displacing traditional methods and provide new results in various fields. Research and development based on the use of three-dimensional printing did not bypass tactile cartography, which is quite expected, given the very essence of tactile perception – the sense of touch of the surface under study. The article discusses the possibility of using 3D printing for the font design of tactile maps intended for people with limited visual function. The author presents the results of a study on the perception of Braille created with a 3D printer. An algorithm developed for converting textual and numerical data from fields in the attribute tables of geographic information system bases into inscriptions of objects executed in Braille was.


Author(s):  
Hamidreza Mosleh ◽  
Shahab Aldin Nazeri ◽  
Mehdi Mehdizadeh ◽  
Fatemeh Moradi ◽  
Hoda Mosleh ◽  
...  

Background: Recent developments in 3D printing have gave orthopedic surgeons among a novel technology that has the ability to revolutionize preoperative planning. The appearance of 3D printing technology (3DPT) enables the digital preoperative plan & simulation to move from the virtual phase to the reality phase. Numerous fields of medicine are lately benefiting from the operate of 3D printing, including the arising part of 3D printing in orthopedic surgery. Methods: We searched on PubMed and Google Scholar databases in January 2020 to find papers and studies about using 3D printing in orthopedy for aim of preplanning. The key words for search were (“3D printing” OR “3D-printed Model” OR “three-dimensional Printer”) AND (“Orthopedy” OR “Orthopedics” OR “Orthopedics”) AND (“Surgery” OR “Operation”) AND (“Pre-planning” OR “Plan”) AND (“Fracture” OR “Trauma”) that we used compound. We exclude the papers which their titles or abstracts were not relevant. At last, we select the most related papers to use in this article. Results: The search on PubMed found 80 Papers and on Google Scholar found 104 papers. After excluding similar and unrelated papers, 44 papers were selected for this review article. Conclusion: Almost all studies have shown us that using a 3D model can have a very positive effect on the surgical process and its outcomes, as well as patient and surgeon satisfaction. Therefore, we anticipate that this technology will be used in many orthopedic surgeries in the near future.


2020 ◽  
Vol 329 ◽  
pp. 03022
Author(s):  
Railya Mukhamadeyeva ◽  
Yerzhan Akinov

The article presents material about the main prospects for the introduction and operation of new additive technology in the Republic of Kazakhstan. Additive technology (3D printing) is a global phenomenon that contributes to the development of new industries that use digital technologies. 3D printing is necessary for the production of quality products. Kazakhstan, the world’s fifteenth largest gold producer, does not actively promote the jewellery industry. Jewellery is an obligatory attribute of a family celebration and an element of the national culture of Kazakhstan. Jewellery products purchased in Kazakhstan are only 10% local; all the rest are from Russia, Turkey and Europe. New production of jewellery products using three-dimensional modelling and additive technologies should become an image industry in Kazakhstan, due to exclusivity and affordable cost


Author(s):  
Paweł Fiedor ◽  
Joanna Ortyl

The following article introduces technologies that build 3 dimensional (3D) objects by adding layer-upon-layer of material, called also additive manufacturing technologies.  Furthermore most important features supporting the conscious choice of 3D printing methods for applications in micro and nanomanufacturing were covered. The micromanufacturing method covers photopolymerisation based methods such as Stereolithography (SLA), Digital Light Processing (DLP), Liquid Crystal Display – DLP coupled method, Two-Photon Polymerisation (TPP) and Inkjet based methods. Functional photocurable materials, with magnetic, conductive or specific optical applications in the 3D printing processes were also reviewed. 


Sign in / Sign up

Export Citation Format

Share Document