scholarly journals Induction of anti-SARS-CoV-2 immune reactions in immune compromised patients

2021 ◽  
Vol 20 (4) ◽  
pp. 18-25
Author(s):  
E. A. Pogodina ◽  
A. V. Lobov ◽  
P. I. Ivanova ◽  
V. I. Kazey ◽  
I. Zh. Shubina

The aim of the review is studying the immune response to the new coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 virus in different populations, including those with immunosuppression due to concomitant diseases or immunosuppressive therapy.The role of T cells in building up the anti-COVID-19 immunity is of special interest, particularly, when comparing T cell and antibody based immunity. A number of studies are focused on the effectiveness of T-cell immunity against SARS-CoV-2 infection, as well as on the resistance to re-infection. The decreased immunity associated with such illnesses as autoimmune diseases, non-autoimmune inflammations, and the effect of immunosuppressive drugs and obviously, different cancers increase the susceptibility to SARS-CoV-2 and COVID-19 development, and exacerbate the course of the disease.Several studies showed that patients with cancer are at risk of impaired immune response associated with a malignant neoplasm. The inefficient immune response was also shown in cancer patients receiving immunomodulatory therapy. However, some studies registered the specific immunogenicity after vaccination in patients with concomitant immunosuppression.Methotrexate is a folate antimetabolite. The drug can be used both in high doses as an antimetabolite in the antitumor therapy, and in low doses as an immunosuppressive agent in patients with autoimmune diseases. Therefore, the review also discusses a study that evaluated the humoral and cellular immune response to the BNT162b2 (PfizerBioNTech) anti-COVID-19 vaccine in patients receiving methotrexate. The rate of antibody production was lower in patients receiving methotrexate, though the level of T-cell response was similar in all groups studied.The review discussed immune compromised patients with cancer and hematological malignancies and patients living with HIV who had COVID-19. Most studies reported no significant differences of COVID-19 outcomes between major population and the patients with suppressed immune system.Hereby, the cell and humoral immune response in immune compromised patients is possible, however, additional studies are required to confirm these data.

Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 233
Author(s):  
Emma Rey-Jurado ◽  
Karen Bohmwald ◽  
Hernán G. Correa ◽  
Alexis M. Kalergis

T cells play an essential role in the immune response against the human respiratory syncytial virus (hRSV). It has been described that both CD4+ and CD8+ T cells can contribute to the clearance of the virus during an infection. However, for some individuals, such an immune response can lead to an exacerbated and detrimental inflammatory response with high recruitment of neutrophils to the lungs. The receptor of most T cells is a heterodimer consisting of α and β chains (αβTCR) that upon antigen engagement induces the activation of these cells. The αβTCR molecule displays a broad sequence diversity that defines the T cell repertoire of an individual. In our laboratory, a recombinant Bacille Calmette–Guérin (BCG) vaccine expressing the nucleoprotein (N) of hRSV (rBCG-N-hRSV) was developed. Such a vaccine induces T cells with a Th1 polarized phenotype that promote the clearance of hRSV infection without causing inflammatory lung damage. Importantly, as part of this work, the T cell receptor (TCR) repertoire of T cells expanded after hRSV infection in naïve and rBCG-N-hRSV-immunized mice was characterized. A more diverse TCR repertoire was observed in the lungs from rBCG-N-hRSV-immunized as compared to unimmunized hRSV-infected mice, suggesting that vaccination with the recombinant rBCG-N-hRSV vaccine triggers the expansion of T cell populations that recognize more viral epitopes. Furthermore, differential expansion of certain TCRVβ chains was found for hRSV infection (TCRVβ+8.3 and TCRVβ+5.1,5.2) as compared to rBCG-N-hRSV vaccination (TCRVβ+11 and TCRVβ+12). Our findings contribute to better understanding the T cell response during hRSV infection, as well as the functioning of a vaccine that induces a protective T cell immunity against this virus.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. 3059-3059
Author(s):  
D. Wallace ◽  
M. Disis ◽  
A. Coveler ◽  
D. Higgins ◽  
J. Childs ◽  
...  

3059 Background: Studies have demonstrated that the level of HER2 gene amplification in breast cancer, assessed by fluorescence in situ hybridization (FISH), correlates with favorable clinical response after treatment with trastuzumab. We questioned whether HER2 gene amplification impacted the development of HER2-specific T-cell immunity following immunization with a HER2 vaccine. Methods: Patients with HER2+ stage III or IV breast cancer, treated to complete remission or stable bone only disease, were enrolled in one of two concurrent clinical trials of HER2-specific vaccines. Eligibility criteria between the two studies were similar. Patients received either a plasmid DNA-based vaccine encoding the HER2 intracellular domain or a peptide-based vaccine composed of 3 HER2 class II epitopes. Peripheral blood was assessed for HER2-specific T-cell responses by interferon gamma (IFN-g) ELISPOT prior to, immediately after, and 6 months to 1 year after the end of vaccinations. Both immune response and FISH data were available on 31 patients. Results: Correlation of FISH levels to IFN-g spots/well in evaluable patients revealed the level of HER2 gene amplification was not related to the presence of pre-existent HER2-specific T-cell immunity prior to vaccination (p=0.43), the generation of a HER2-specific immune response after vaccination (p=0.35), or the persistence of the HER2-specific T-cell response (p=0.33). However, the magnitude of the T-cell response achieved was less as HER2 gene amplification increased (p=0.05). Conclusions: The level of HER2 gene amplification in the primary tumor can adversely impact the magnitude of HER2-specific T-cell immunity achieved after vaccination. No significant financial relationships to disclose.


2021 ◽  
Author(s):  
Damon H. May ◽  
Benjamin E. R. Rubin ◽  
Sudeb C. Dalai ◽  
Krishna Patel ◽  
Shahin Shafiani ◽  
...  

The Omicron SARS-CoV-2 variant contains 34 mutations in the spike gene likely impacting protective efficacy from vaccines. We evaluated the potential impact of these mutations on the cellular immune response. Combining epitope mapping to SARS-CoV-2 vaccines that we have determined from past experiments along with T cell receptor (TCR) repertoire sequencing from thousands of vaccinated or naturally infected individuals, we estimate the abrogation of the cellular immune response in Omicron. Although 20% of CD4+ T cell epitopes are potentially affected, the loss of immunity mediated by CD4+ T cells is estimated to be slightly above 30% as some of the affected epitopes are relatively more immunogenic. For CD8+ T cells, we estimate a loss of approximately 20%. These reductions in T cell immunity are substantially larger than observed in other widely distributed variants. Combined with the expected substantial loss of neutralization from antibodies, the overall protection provided by SARS-CoV-2 vaccines could be impacted adversely. From analysis of prior variants, the efficacy of vaccines against symptomatic infection has been largely maintained and is strongly correlated with the T cell response but not as strongly with the neutralizing antibody response. We expect the remaining 70% to 80% of on-target T cells induced by SARS-CoV-2 vaccination to reduce morbidity and mortality from infection with Omicron.


2021 ◽  
Author(s):  
Hoa My Thi Vo ◽  
Alvino Maestri ◽  
Sokchea Lay ◽  
Sotheary Sann ◽  
Nisa Ya ◽  
...  

Assessing the duration of humoral and cellular immunity remains key to overcome the current SARS-CoV-2 pandemic, especially in understudied populations in least developed countries. Sixty-four Cambodian individuals with laboratory-confirmed infection with asymptomatic or mild/moderate clinical presentation were evaluated for humoral immune response to the viral spike protein and antibody effector functions during acute phase of infection and at 6-9 months follow-up. Antigen-specific B cells, CD4+ and CD8+ T cells were characterized, and T cells were interrogated for functionality at late convalescence. Anti-spike (S) antibody titers decreased over time, but effector functions mediated by S-specific antibodies remained stable. S- and nucleocapsid (N)-specific B cells could be detected in late convalescence in the activated memory B cell compartment and are mostly IgG+. CD4+ and CD8+ T cell immunity was maintained to S and membrane (M) protein. Asymptomatic infection resulted in decreased ADCC and frequency of SARS-CoV-2-specific CD4+ T cells at late convalescence. Whereas anti-S antibodies correlated with S-specific B cells, there was no correlation between T cell response and humoral immunity. Hence, all aspects of a protective immune response are maintained up to nine months after SARS-CoV-2 infection in the absence of re-infection.


2002 ◽  
Vol 70 (2) ◽  
pp. 434-443 ◽  
Author(s):  
Lori Casciotti ◽  
Kenneth H. Ely ◽  
Martha E. Williams ◽  
Imtiaz A. Khan

ABSTRACT T-cell immunity is critical for survival of hosts infected with Toxoplasma gondii. Among the cells in the T-cell population, CD8+ T cells are considered the major effector cells against this parasite. It is believed that CD4+ T cells may be crucial for induction of the CD8+-T-cell response against T. gondii. In the present study, CD4−/− mice were used to evaluate the role of conventional CD4+ T cells in the immune response against T. gondii infection. CD4−/− mice infected with T. gondii exhibited lower gamma interferon (IFN-γ) messages in the majority of their tissues. As a result, mortality due to a hyperinflammatory response was prevented in these animals. Interestingly, T. gondii infection induced a normal antigen-specific CD8+-T-cell immune response in CD4−/− mice. No difference in generation of precursor cytotoxic T lymphocytes (pCTL) or in IFN-γ production by the CD8+-T-cell populations from the knockout and wild-type animals was observed. However, the mutant mice were not able to sustain CD8+-T-cell immunity. At 180 days after infection, the CD8+-T-cell response in the knockout mice was depressed, as determined by pCTL and IFN-γ assays. Loss of CD8+-T-cell immunity at this time was confirmed by adoptive transfer experiments. Purified CD8+ T cells from CD4−/− donors that had been immunized 180 days earlier failed to protect the recipient mice against a lethal infection. Our study demonstrated that although CD8+-T-cell immunity can be induced in the absence of conventional CD4+ T cells, it cannot be maintained without such cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ryan D. Pardy ◽  
Stefanie F. Valbon ◽  
Brendan Cordeiro ◽  
Connie M. Krawczyk ◽  
Martin J. Richer

AbstractZika virus (ZIKV) has emerged as an important global health threat, with the recently acquired capacity to cause severe neurological symptoms and to persist within host tissues. We previously demonstrated that an early Asian lineage ZIKV isolate induces a highly activated CD8 T cell response specific for an immunodominant epitope in the ZIKV envelope protein in wild-type mice. Here we show that a contemporary ZIKV isolate from the Brazilian outbreak severely limits CD8 T cell immunity in mice and blocks generation of the immunodominant CD8 T cell response. This is associated with a more sustained infection that is cleared between 7- and 14-days post-infection. Mechanistically, we demonstrate that infection with the Brazilian ZIKV isolate reduces the cross-presentation capacity of dendritic cells and fails to fully activate the immunoproteasome. Thus, our study provides an isolate-specific mechanism of host immune evasion by one Brazilian ZIKV isolate, which differs from the early Asian lineage isolate and provides potential insight into viral persistence associated with recent ZIKV outbreaks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amanda W. K. AuYeung ◽  
Robert C. Mould ◽  
Ashley A. Stegelmeier ◽  
Jacob P. van Vloten ◽  
Khalil Karimi ◽  
...  

AbstractVaccination can prevent viral infections via virus-specific T cells, among other mechanisms. A goal of oncolytic virotherapy is replication of oncolytic viruses (OVs) in tumors, so pre-existing T cell immunity against an OV-encoded transgene would seem counterproductive. We developed a treatment for melanomas by pre-vaccinating against an oncolytic vesicular stomatitis virus (VSV)-encoded tumor antigen. Surprisingly, when the VSV-vectored booster vaccine was administered at the peak of the primary effector T cell response, oncolysis was not abrogated. We sought to determine how oncolysis was retained during a robust T cell response against the VSV-encoded transgene product. A murine melanoma model was used to identify two mechanisms that enable this phenomenon. First, tumor-infiltrating T cells had reduced cytopathic potential due to immunosuppression. Second, virus-induced lymphopenia acutely removed virus-specific T cells from tumors. These mechanisms provide a window of opportunity for replication of oncolytic VSV and rationale for a paradigm change in oncolytic virotherapy, whereby immune responses could be intentionally induced against a VSV-encoded melanoma-associated antigen to improve safety without abrogating oncolysis.


2021 ◽  
Vol 9 (6) ◽  
pp. e002269
Author(s):  
Shota Aoyama ◽  
Ryosuke Nakagawa ◽  
Satoshi Nemoto ◽  
Patricio Perez-Villarroel ◽  
James J Mulé ◽  
...  

BackgroundThe temporal response to checkpoint blockade (CB) is incompletely understood. Here, we profiled the tumor infiltrating lymphocyte (TIL) landscape in response to combination checkpoint blockade at two distinct timepoints of solid tumor growth.MethodsC57BL/6 mice bearing subcutaneous MC38 tumors were treated with anti-PD-1 and/or anti-CTLA-4 antibodies. At 11 or 21 days, TIL phenotype and effector function were analyzed in excised tumor digests using high parameter flow cytometry. The contributions of major TIL populations toward overall response were then assessed using ex vivo cytotoxicity and in vivo tumor growth assays.ResultsThe distribution and effector function among 37 distinct TIL populations shifted dramatically between early and late MC38 growth. At 11 days, the immune response was dominated by Tumor necrosis factor alpha (TNFα)-producing NKT, representing over half of all TIL. These were accompanied by modest frequencies of natural killer (NK), CD4+, or CD8+ T cells, producing low levels of IFN-γ. At 21 days, NKT populations were reduced to a combined 20% of TIL, giving way to increased NK, CD4+, and CD8+ T cells, with increased IFN-γ production. Treatment with CB accelerated this switch. At day 11, CB reduced NKT to less than 20% of all TIL, downregulated TNFα across NKT and CD4+ T cell populations, increased CD4+ and CD8+ TIL frequencies, and significantly upregulated IFN-γ production. Degranulation was largely associated with NK and NKT TIL. Blockade of H-2kb and/or CD1d during ex vivo cytotoxicity assays revealed NKT has limited direct cytotoxicity against parent MC38. However, forced CD1d overexpression in MC38 cells significantly diminished tumor growth, suggesting NKT TIL exerts indirect control over MC38 growth.ConclusionsDespite an indirect benefit of early NKT activity, CB accelerates a switch from TNFα, NKT-driven immune response toward an IFN-γ driven CD4+/CD8+ T cell response in MC38 tumors. These results uncover a novel NKT/T cell switch that may be a key feature of CB response in CD1d+ tumors.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 606
Author(s):  
Giuseppe Cappellano ◽  
Hugo Abreu ◽  
Chiara Casale ◽  
Umberto Dianzani ◽  
Annalisa Chiocchetti

The first vaccines ever made were based on live-attenuated or inactivated pathogens, either whole cells or fragments. Although these vaccines required the co-administration of antigens with adjuvants to induce a strong humoral response, they could only elicit a poor CD8+ T-cell response. In contrast, next-generation nano/microparticle-based vaccines offer several advantages over traditional ones because they can induce a more potent CD8+ T-cell response and, at the same time, are ideal carriers for proteins, adjuvants, and nucleic acids. The fact that these nanocarriers can be loaded with molecules able to modulate the immune response by inducing different effector functions and regulatory activities makes them ideal tools for inverse vaccination, whose goal is to shut down the immune response in autoimmune diseases. Poly (lactic-co-glycolic acid) (PLGA) and liposomes are biocompatible materials approved by the Food and Drug Administration (FDA) for clinical use and are, therefore, suitable for nanoparticle-based vaccines. Recently, another candidate platform for innovative vaccines based on extracellular vesicles (EVs) has been shown to efficiently co-deliver antigens and adjuvants. This review will discuss the potential use of PLGA-NPs, liposomes, and EVs as carriers of peptides, adjuvants, mRNA, and DNA for the development of next-generation vaccines against endemic and emerging viruses in light of the recent COVID-19 pandemic.


1975 ◽  
Vol 141 (1) ◽  
pp. 72-81 ◽  
Author(s):  
D E McFarlin ◽  
S C Hsu ◽  
S B Slemenda ◽  
F C Chou ◽  
R F Kibler

After challenge with guiena pig basic protein (GPBP) Lewis (Le) rats, which are homozygous for the immune response experimental allergic encephalomyelitis (Ir-EAE) gene, developed positive delayed skin tests against GPBP and the 43 residue encephalitogenic fragment (EF); in addition, Le rat lymph node cells (LNC) were stimulated and produced migration inhibitory factor (MIF) when incubated in vitro with these antigens. In contrast Brown Norway (BN) rats, which lack the Ir-EAE gene, did not develop delayed skin tests to EF and their LNC were not stimulated and did not produce MIF when incubated in vitro with EF. These observations indicate that the Ir-EAE gene controls a T-cell response against the EF. Le rats produced measurable anti-BP antibody by radioimmunoassay after primary challenge. Although no antibody was detectable in BN rats by radioimmunoassay, radioimmunoelectrophoresis indicated that a small amount of antibody was formed after primary immunization. After boosting intraperitoneally, both strains of rat exhibited a rise in anti-BP antibody; which was greater in Le rats. In both strains of rat the anti-BP antibody reacted with a portion of the molecule other than the EF. Since EF primarily evokes a T cell response, it is suggested that the EF portion of the BP molecule may contain a helper determinant in antibody production.


Sign in / Sign up

Export Citation Format

Share Document