scholarly journals Inflammation features of brown adipose tissue of rats with diet-induced obesity development after different regimes of melatonin administration

Author(s):  
O. Kalmukova ◽  
Y. Leonova ◽  
O. Savchuk ◽  
N. Skrypnyk ◽  
M. Dzerzhynsky

One of the prominent obesity-related changes is the development of systemic low-grade proinflammatory state. Brown adipose tissue (BAT) may serve as a potential target for activation by melatonin to facilitate heat production and simultaneously stimulate lipolysis during obesity development. At the same time, melatonin is known to have immunomodulatory properties, which are performed via endocrine and paracrine signal pathways in variety cell types (including brown adipocytes)and change significantly during the day. Therefore, it can be used in a wide range of doses and at different times of the day (chronotherapeutic approach). Thus, the main goal of our research was to analyze the inflammation state of brown adipose tissue of rats during high-calorie diet induced-obesity development after different daily melatonin application in different regimes. Melatonin was administered by gavage for 7 weeks in dose 30 mg/kg 1 h before lights-off (HCD ZT11, M ZT11, evening), or 1 h after lights-on (HCD ZT01, M ZT01, morning). Tissue collagen content and leukocyte infiltration levels in BAT, detected by Van Gieson trichrome staining, were used as markers for the assessment of BAT inflammation state BAT. Propagation of obesity resulted in the increase of BATfibrosis level (the relative area occupied by collagen fibers) and tissue leukocyte infiltration in comparison to control rats. BAT fibrosis level after melatonin administrations to obese rats of HCD ZT01 and HCD ZT11 groups decreased to control values. Similar effects were observedinBAT tissue leukocyte infiltration after both regimes (HCD ZT01 and HCD ZT11 groups) of melatonin intake: this parameter decreased significantly, comparing to obese rats, but was still elevated, comparing to controls. At the same time, melatonin treatmentin morning or evening regimes did not have any impact on BAT fibrosis propagation and leukocyte infiltration in animals that consumed standard diet (M ZT01 and M ZT11 groups). To sum up, we suggest corrective properties of melatonin in context of chronic low-grade inflammation in obese rats BAT and suppose its wide potential for the therapeutic use combined with virtually absent side effects on BAT histophysiology of non-obese rats.

1991 ◽  
Vol 279 (2) ◽  
pp. 575-579 ◽  
Author(s):  
P Puigserver ◽  
I Lladó ◽  
A Palou ◽  
M Gianotti

A specific immunoassay of uncoupling protein (UCP) and measurement of GDP binding were used to study the chronic responses of brown adipose tissue (BAT) mitochondria from rats made obese by dietary means (cafeteria rats) and from obese rats subsequently fed a standard diet (post-cafeteria rats). We studied the response to fasting in order to assess the masking/unmasking responses in these groups. These studies have shown the following. (1) In the obese rats (cafeteria and post-cafeteria) the chronic increase in mitochondrial UCP concentration compared with controls parallels the increase in GDP binding. (2) In 24 h-fasted control rats the decrease in GDP binding is associated with a change in UCP concentration, but in fasting cafeteria and post-cafeteria obese rats the decrease in GDP binding is not associated with any change in UCP concentration. (3) Post-cafeteria obese rats showed increased GDP binding and higher UCP concentrations than the controls, but these values were less than in cafeteria obese rats. (4) Control rats at 8 months old showed greater GDP binding and had a higher UCP concentration than 11-month-old control rats. (5) The responses of GDP binding and UCP concentration to fasting in post-cafeteria obese rats were similar to those in cafeteria obese rats, suggesting that such abbreviations are related to the obese status itself rather than to the composition of the cafeteria diet. The evidence supports the hypothesis that the response of the cafeteria and post-cafeteria obese rats to fasting is associated with a masking of UCP, whereas with chronic manipulation of diet changes in UCP concentration predominate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Enrique Calvo ◽  
Noelia Keiran ◽  
Catalina Núñez-Roa ◽  
Elsa Maymó-Masip ◽  
Miriam Ejarque ◽  
...  

AbstractAdipose-derived mesenchymal stem cells (ASCs) are a promising option for the treatment of obesity and its metabolic co-morbidities. Despite the recent identification of brown adipose tissue (BAT) as a potential target in the management of obesity, the use of ASCs isolated from BAT as a therapy for patients with obesity has not yet been explored. Metabolic activation of BAT has been shown to have not only thermogenic effects, but it also triggers the secretion of factors that confer protection against obesity. Herein, we isolated and characterized ASCs from the visceral adipose tissue surrounding a pheochromocytoma (IB-hASCs), a model of inducible BAT in humans. We then compared the anti-obesity properties of IB-hASCs and human ASCs isolated from visceral white adipose tissue (W-hASCs) in a murine model of diet-induced obesity. We found that both ASC therapies mitigated the metabolic abnormalities of obesity to a similar extent, including reducing weight gain and improving glucose tolerance. However, infusion of IB-hASCs was superior to W-hASCs in suppressing lipogenic and inflammatory markers, as well as preserving insulin secretion. Our findings provide evidence for the metabolic benefits of visceral ASC infusion and support further studies on IB-hASCs as a therapeutic option for obesity-related comorbidities.


1989 ◽  
Vol 36 (3) ◽  
pp. 403-408 ◽  
Author(s):  
KEIJI YOSHIOKA ◽  
TOSHIHIDE YOSHIDA ◽  
YASUO WAKABAYASHI ◽  
HITOSHI NISHIOKA ◽  
MOTOHARU KONDO

Author(s):  
Gabriela S. Perez ◽  
Gabriele D.S. Cordeiro ◽  
Lucimeire S. Santos ◽  
Djane D.A. Espírito-Santo ◽  
Gilson T. Boaventura ◽  
...  

1987 ◽  
Vol 253 (1) ◽  
pp. R158-R166 ◽  
Author(s):  
R. B. Kanarek ◽  
J. R. Aprille ◽  
E. Hirsch ◽  
L. Gualtiere ◽  
C. A. Brown

Adult male Sprague-Dawley rats were divided into three groups and fed diets containing either 10, 20, or 40% protein for 56 days. Half of the rats in each dietary condition were given a 32% sucrose solution plus the standard diet and water. Sucrose intake varied directly as a function of dietary protein levels. Rats fed either the 10 or 20% protein diet and sucrose had higher caloric intakes, gained more weight, were more efficient at using calories for weight gain, and had more adipose tissue than rats given the same diet without sucrose. Rats fed the 40% protein diet and sucrose did not exhibit overeating, excess weight gain, or increased feed efficiency relative to animals fed the 40% diet alone. Animals given sucrose had more interscapular brown adipose tissue (IBAT) and a greater metabolic potential for thermogenesis in IBAT as determined by GDP binding in mitochondria than rats not fed sucrose. These results demonstrate that dietary protein is important in the development of sucrose-induced obesity and that increases in IBAT mass and activity can occur concomitant with increased feed efficiency.


2011 ◽  
Vol 107 (2) ◽  
pp. 170-178 ◽  
Author(s):  
David Pajuelo ◽  
Helena Quesada ◽  
Sabina Díaz ◽  
Anabel Fernández-Iglesias ◽  
Anna Arola-Arnal ◽  
...  

The present study aims to determine the effects of grape seed proanthocyanidin extract (GSPE) on brown adipose tissue (BAT) mitochondrial function in a state of obesity induced by diet. Wistar male rats were fed with a cafeteria diet (Cd) for 4 months; during the last 21 d, two groups were treated with doses of 25 and 50 mg GSPE/kg body weight. In the BAT, enzymatic activities of citrate synthase, cytochrome c oxidase (COX) and ATPase were determined and gene expression was analysed by real-time PCR. The mitochondrial function of BAT was determined in fresh mitochondria by high-resolution respirometry using both pyruvate and carnitine–palmitoyl-CoA as substrates. The results show that the Cd causes an important decrease in the gene expression of sirtuin 1, nuclear respiratory factor 1, isocitrate dehydrogenase 3γ and COX5α and, what is more telling, decreases the levels of mitochondrial respiration both with pyruvate and canitine–palmitoyl-CoA. Most of these parameters, which are indicative of mitochondrial dysfunction due to diet-induced obesity, are improved by chronic supplementation of GSPE. The beneficial effects caused by the administration of GSPE are exhibited as a protection against weight gain, in spite of the Cd the rats were fed. These data indicate that chronic consumption of a moderate dose of GSPE can correct an energy imbalance in a situation of diet-induced obesity, thereby improving the mitochondrial function and thermogenic capacity of the BAT.


IUBMB Life ◽  
1997 ◽  
Vol 43 (5) ◽  
pp. 1129-1136
Author(s):  
Isabel Lladó ◽  
Antoni Pons ◽  
Andreu Palou

1986 ◽  
Vol 250 (4) ◽  
pp. R595-R607 ◽  
Author(s):  
M. R. Freedman ◽  
B. A. Horwitz ◽  
J. S. Stern

Female obese and lean Zucker rats were adrenalectomized (ADX) or sham-operated at 4 wk of age. ADX animals were given daily injections of 0.01, 0.05, 0.50, 1.0, or 2.0 mg hydrocortisone/100 g body wt for 30 days. ADX rats gained less weight than sham-operated controls. Obese ADX rats at the lowest dose (0.01) had a net positive energy gain but lost body fat. As steroid dose increased, obese rats deposited more fat and less protein. Doses of 0.01 and 0.05 mg produced rats that were less fat than sham-operated controls, whereas doses of 0.50, 1.0, and 2.0 mg produced rats of comparable body fat composition. Obese rats were consistently fatter and had a significantly smaller percentage body protein than lean rats at each dose. Body fat elevation was reflected by heavier parametrial and retroperitoneal fat depots and larger fat cells at all doses except the lowest. Compared with sham-operated controls, lean and obese rats at the two lowest replacement doses (0.01, 0.05) exhibited significantly decreased plasma insulin and triglyceride levels and significantly elevated brown adipose tissue protein content and citrate synthase (CS) activity. Obese rats at these doses had significantly reduced adipose tissue lipoprotein lipase (LPL) activity in the retroperitoneal depot and lower food intake. Furthermore, these obese rats had adipose depot weights, cell sizes, LPL activity, and plasma insulin, glucose, and triglyceride comparable to that of lean sham-operated controls. As steroid dose increased (0.5, 1.0, 2.0), plasma insulin and triglyceride and food intake markedly increased only in obese rats. Adipose tissue LPL activity appeared unaffected by dose. Brown adipose tissue protein content and CS activity significantly decreased as dose increased in both lean and obese rats. At all doses of replacement obese rats were more responsive to steroid than were lean rats. Obese rats receiving 0.01 mg had comparable fat depot weights, cell sizes, and plasma insulin and triglyceride as lean rats receiving 50 times as much steroid per day (0.50 mg). These results suggest glucocorticoids play an important role in the early development of obesity in the Zucker rat and support the hypothesis that obese rats are more responsive to glucocorticoids than are lean rats.


Sign in / Sign up

Export Citation Format

Share Document