scholarly journals Microprocessors KOMDIV for High Performance Embedded Systems

2021 ◽  
Vol 7 (3) ◽  
Author(s):  
S.G. Bobkov

The problems of creating of high-performance embedded computing systems based on microprocessors KOMDIV is considered. Processor performance is dependent upon three characteristics: clock cycle, clock cycles per instruction, and instruction count. These characteristics for microprocessors KOMDIV are optimized using parameter performance/power consumption and requirements of embedded systems.

Author(s):  
A. Ferrerón Labari ◽  
D. Suárez Gracia ◽  
V. Viñals Yúfera

In the last years, embedded systems have evolved so that they offer capabilities we could only find before in high performance systems. Portable devices already have multiprocessors on-chip (such as PowerPC 476FP or ARM Cortex A9 MP), usually multi-threaded, and a powerful multi-level cache memory hierarchy on-chip. As most of these systems are battery-powered, the power consumption becomes a critical issue. Achieving high performance and low power consumption is a high complexity challenge where some proposals have been already made. Suarez et al. proposed a new cache hierarchy on-chip, the LP-NUCA (Low Power NUCA), which is able to reduce the access latency taking advantage of NUCA (Non-Uniform Cache Architectures) properties. The key points are decoupling the functionality, and utilizing three specialized networks on-chip. This structure has been proved to be efficient for data hierarchies, achieving a good performance and reducing the energy consumption. On the other hand, instruction caches have different requirements and characteristics than data caches, contradicting the low-power embedded systems requirements, especially in SMT (simultaneous multi-threading) environments. We want to study the benefits of utilizing small tiled caches for the instruction hierarchy, so we propose a new design, ID-LP-NUCAs. Thus, we need to re-evaluate completely our previous design in terms of structure design, interconnection networks (including topologies, flow control and routing), content management (with special interest in hardware/software content allocation policies), and structure sharing. In CMP environments (chip multiprocessors) with parallel workloads, coherence plays an important role, and must be taken into consideration.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 684
Author(s):  
Dinh-Lam Tran ◽  
Xuan-Tu Tran ◽  
Duy-Hieu Bui ◽  
Cong-Kha Pham

HEVC-standardized encoders employ the CABAC (context-based adaptive binary arithmetic coding) to achieve high compression ratios and video quality that supports modern real-time high-quality video services. Binarizer is one of three main blocks in a CABAC architecture, where binary symbols (bins) are generated to feed the binary arithmetic encoder (BAE). The residual video data occupied an average of 75% of the CABAC’s work-load, thus its performance will significantly contribute to the overall performance of whole CABAC design. This paper proposes an efficient hardware implementation of a binarizer for CABAC that focuses on low area cost, low power consumption while still providing enough bins for high-throughput CABAC. On the average, the proposed design can process upto 3.5 residual syntax elements (SEs) per clock cycle at the maximum frequency of 500 MHz with an area cost of 9.45 Kgates (6.41 Kgates for the binarizer core) and power consumption of 0.239 mW (0.184 mW for the binarizer core) with NanGate 45 nm technology. It shows that our proposal achieved a high overhead-efficiency of 1.293 Mbins/Kgate/mW, much better than the other related high performance designs. In addition, our design also achieved a high power-efficiency of 8288 Mbins/mW; this is important factor for handheld applications.


2013 ◽  
pp. 50-64
Author(s):  
Osman Hasan ◽  
Sofiène Tahar

The accurate reliability assessment of embedded systems has become a concern of overwhelming importance with their increasingly ubiquitous usage in safety-critical domains like transportation, medicine, and nuclear power plants. Traditional reliability analysis approaches of testing and simulation cannot guarantee accurate result and thus there is a growing trend towards developing precise mathematical models of embedded systems and to use formal verification methods to assess their reliability. This chapter is mainly focused towards this emerging trend as it presents a formal approach for the reliability assessment of embedded computing systems using a higher-order-logic theorem prover (HOL). Besides providing the formal probability theory based fundamentals of this recently proposed technique, the chapter outlines a generic reliability analysis methodology for embedded systems as well. For illustration purposes, two case studies have been considered, i.e., analyzing the reparability conditions for a reconfigurable memory array in the presence of stuck-at and coupling faults and assessing the reliability of combinational logic based digital circuits.


2013 ◽  
pp. 402-419 ◽  
Author(s):  
Elisavet Konstantinou ◽  
Panayotis E. Nastou ◽  
Yannis C. Stamatiou ◽  
Christos Zaroliagis

Embedded computing devices dominate our everyday activities, from cell phones to wireless sensors that collect and process data for various applications. Although desktop and high-end server security seems to be under control by the use of current security technology, securing the low-end embedded computing systems is a difficult long-term problem. This is mainly due to the fact that the embedded systems are constrained by their operational environment and the limited resources they are equipped with. Recent research activities focus on the deployment of lightweight cryptographic algorithms and security protocols that are well suited to the limited resources of low-end embedded systems. Elliptic Curve Cryptography (ECC) offers an interesting alternative to the classical public key cryptography for embedded systems (e.g., RSA and ElGamal), since it uses smaller key sizes for achieving the same security level, thus making ECC an attractive and efficient alternative for deployment in embedded systems. In this chapter, the processing requirements and architectures for secure network access, communication functions, storage, and high availability of embedded devices are discussed. In addition, ECC-based state-of-the-art lightweight cryptographic primitives for the deployment of security protocols in embedded systems that fulfill the requirements are presented.


2021 ◽  
Author(s):  
Thomas Preußer ◽  
Smitha Gautham ◽  
Abhi Rajagopala ◽  
Carl Elks ◽  
Alexander Weiss

Decades of advances in computer architecture, software-intensive applications and system integration have created significant challenges for embedded systems designers and test engineers. Intrusive software instrumentation and breakpoint-based debugging are often viewed as the primary options for observing operational system internals. This narrow sight creates complicated test flows and convoluted debugging procedures. Modern embedded computing systems offer Embedded Trace as the technological answer to the encountered observability conundrum. Although an integral part of virtually all modern processors, it is frequently overlooked. Its technical foundations are little known to application engineers, test engineers, and project managers. This article explains Embedded Trace as an essential technology in the testing and debugging toolbox. It highlights its capabilities, limitations and opportunities.


2021 ◽  
Author(s):  
Thomas Preußer ◽  
Smitha Gautham ◽  
Abhi Rajagopala ◽  
Carl Elks ◽  
Alexander Weiss

Decades of advances in computer architecture, software-intensive applications and system integration have created significant challenges for embedded systems designers and test engineers. Intrusive software instrumentation and breakpoint-based debugging are often viewed as the primary options for observing operational system internals. This narrow sight creates complicated test flows and convoluted debugging procedures. Modern embedded computing systems offer Embedded Trace as the technological answer to the encountered observability conundrum. Although an integral part of virtually all modern processors, it is frequently overlooked. Its technical foundations are little known to application engineers, test engineers, and project managers. This article explains Embedded Trace as an essential technology in the testing and debugging toolbox. It highlights its capabilities, limitations and opportunities.


Author(s):  
Deepika Bansal ◽  
Bal Chand Nagar ◽  
Brahamdeo Prasad Singh ◽  
Ajay Kumar

Background & Objective: In this paper, a modified pseudo domino configuration has been proposed to improve the leakage power consumption and Power Delay Product (PDP) of dynamic logic using Carbon Nanotube MOSFETs (CN-MOSFETs). The simulations for proposed and published domino circuits are verified by using Synopsys HSPICE simulator with 32nm CN-MOSFET technology which is provided by Stanford. Methods: The simulation results of the proposed technique are validated for improvement of wide fan-in domino OR gate as a benchmark circuit at 500 MHz clock frequency. Results: The proposed configuration is suitable for cascading of the high performance wide fan-in circuits without any charge sharing. Conclusion: The performance analysis of 8-input OR gate demonstrate that the proposed circuit provides lower static and dynamic power consumption up to 62 and 40% respectively, and PDP improvement is 60% as compared to standard domino circuit.


Author(s):  
Shuai Mu ◽  
Chenxi Wang ◽  
Ming Liu ◽  
Dongdong Li ◽  
Maohua Zhu ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


Sign in / Sign up

Export Citation Format

Share Document