scholarly journals A COMPREHENSIVE REVIEW OF ENERGY-BASED ROUTING STRATEGIES FOR INTERNET OF THINGS

2021 ◽  
Vol 9 (2) ◽  
pp. 1031-1044
Author(s):  
Srinivasulu M, Et. al.

IoT is the acronym for Internet of Things acronym. At present IoT is a buzzword amongst academia, research and industry communities. Everything surrounded by us have developed abilities to communicate via the medium of internet. The Routing information plays a vital role in establishing communication between nodes in the space of IoT. Maximum energy of such connected nodes is consumed in the process of routing the packets. In this context optimizing the network lifetime with minimal energy consumption becomes important for efficient implementation of IoT infrastructure. This literature review is has the objective to identify the limitations existing in improving the network usability and thus enhance the network lifetime. The focus of this review is to consider various parameters like Quality of Service (QoS), efficient node deployment techniques, Network lifetime for Wireless Sensor Networks (WSN). A comprehensive and systematic study of Routing challenges encountered in an IoT network is accomplished. Further the performance of various energy routing protocols are studied.

IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 1846-1871 ◽  
Author(s):  
Muhammad Asif ◽  
Shafiullah Khan ◽  
Rashid Ahmad ◽  
Muhammad Sohail ◽  
Dhananjay Singh

2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Munsyi Munsyi ◽  
Muhammad Syahid Febriadi ◽  
Nahdi Saubari

Di era Internet of Things (IoT). Siapapun dapat mengakses data dimanapun dan kapanpun. Semua data yang tersimpan dapat diakses dengan menggunakan perangkat seperti smartphone, laptop, dan komputer. Salah satu dari teknologi Internet of Things adalah smart city untuk memonitoring lingkungan. Untuk dapat mengetahui kondisi dan kualitas suatu lingkungan, seseorang tidak perlu lagi menunggu pengumuman informasi atau datang ke instansi terkait di pemerintahan. Pemanfaatan IoT pada monitoring lingkungan dapat di terapkan pada bidang peternakan. Hal ini dapat membantu seseorang dalam mengetahui kualitas dari kondisi lingkungan yang akan dimanfaatkan untuk peternakan. Dalam hal ini adalah bagaimana mengetahui peternakan yang cocok untuk diterapkan dilingkungan yang dia tuju untuk membangun peternakan sapi atau peternakan ayam. Menggunakan perangkat wireless sensor networks (WSN) untuk melakukan pengambilan nilai dari kondisi lingkungan tersebut dapat membantu mengetahui kondisi dan kualitas lingkungan. IoT membantu seseorang untuk membuka usaha dibidang peternakan yang cocok untuk wilayah tersebut tanpa harus melakukan banyak survey yang menelan banyak biaya. Hanya dengan menggunakan teknologi IoT siapapun dapat mendapatkan data kualitas lingkungan yang cocok untuk membuka sebuah peternakan dengan kondisi lingkungan yang sudah diketahui sebelumnya. Kata kunci: Internet of Things, Kondisi Lingkungan, Peternakan, Smart City, WSN. In the Internet of Things era (IoT). Everyone can access the data in anywhere and anytime. All stored data can be accessed using end devices such as smartphones, laptops and computers. One of the IoT technologies is a smart city for monitoring the environment. To be able to know the condition and quality of an environment, everyone does not need to wait for the announcement of information or come to the relevant agencies in the government. Utilization of IoT on Environmental Monitoring can be applied to the field of ranch. in this case it will be used for helping someone in knowing the quality of environmental conditions that will be used for. In this case it is how to find out which ranchs are suitable to be applied in the environment from the user that he want to construct cow or chicken ranch. Using wireless sensor networks (WSN) to retrieve values from these environmental conditions can help determine the condition and quality of the environment. IoT helps someone to open a business in field of ranchs that is suitable for region without having to do many survey. Only by using IoT, anyone can get suitable environmental quality data to open a ranch with environmental conditions that have been known before.Keywords: Environmental conditions, Internet of Things, Ranch, Smart City, WSN. 


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Hind Alwan ◽  
Anjali Agarwal

With the growing demand for quality-of-service (QoS) aware routing protocol in wireless networks, QoS-based routing has emerged as an interesting research topic. Quality of service guarantee in wireless sensor networks (WSNs) is difficult and more challenging due to the fact that the available resources of sensors and the various applications running over these networks have different constraints in their nature and requirements. In this paper, we present a heuristic neighbor selection mechanism in WSNs that uses the geographic routing mechanism combined with the QoS requirements to provide multiobjective QoS routing (MQoSR) for different application requirements. The problem of providing QoS routing is formulated as link, and path-based metrics. The link-based metrics are partitioned in terms of reliability, delay, distance to sink, and energy, and the path-based metrics are presented in terms of end-to-end delay, reliability of data transmission, and network lifetime. The simulation results demonstrate that MQoSR protocol is able to achieve the delay requirements, and due to optimum path selection process, the achieved data delivery ratio is always above the required one. MQoSR protocol outperforms the existing model in the literature remarkably in terms of reliable data transmission, time data delivery, and routing overhead and underlines the importance of energy-efficient solution to enhance network lifetime.


2013 ◽  
Vol 705 ◽  
pp. 337-342 ◽  
Author(s):  
Monica R. Mundada ◽  
Nishanth Thimmegowda ◽  
T. Bhuvaneswari ◽  
V. Cyrilraj

Conservation of the energy available in each sensor node and increasing network lifetime are most important design issues for a wireless sensor network (WSN). Many routing algorithms have been developed in this regard. Out of all these, clustering algorithms have gained a lot of importance in increasing the network lifetime thereby the efficiency of the nodes in it. Clustering provides an effective way for prolonging the lifetime of WSN. This paper elaborately compares the two renowned routing protocols namely, LEACH and EAMMH supported by simulations scenarios, and analysis of the results against known metrics with energy and network lifetime being major among them.


Author(s):  
Igor Novid ◽  
Delsina Faiza ◽  
Thamrin Thamrin ◽  
Winda Agustiarmi

The development of Internet use has spurred Wireless Sensor Networks (WSNs) technology so that it becomes a widely researched and applied device. With the need to use high WSNs, the quality of features provided such as high data transfer speeds and the smallest possible disruption is something that should be available. Although some uses of WSNs do not require high speed and have a tolerance for interference, there are very few types of use. Nevertheless, routing protocols are provided to meet the types of data transfer requirements. The protocols available for each type will be analyzed and compared to find out the best performance.Keywords: data transfer, routing protocol, WSN.


2018 ◽  
Vol 7 (3) ◽  
pp. 1888
Author(s):  
Sunitha Tappari ◽  
K. Sridevi

Internet of Things (IoT) plays a vital role in the Wireless sensor networks (WSNs), which is used for many applications, such as military, health, and environmental. Security is the major concern and it is very difficult to achieve because of a different kind of attack in the network. In recent years, many authors have introduced different Hardware Architectures to solve these security problems. This paper has discussed about a review of various Hardware Architectures for the lightweight Crypt-analytics methods and the comparative learning of various Crypt-analytics and authentication systems carried out. The comparative study result showed that the lightweight algorithms have good per-formance compared to the conventional Crypt-analytics algorithm in terms of memory requirement, operations, and power consumption. 


2020 ◽  
Vol 10 (5) ◽  
pp. 1821 ◽  
Author(s):  
Liangrui Tang ◽  
Haobo Guo ◽  
Runze Wu ◽  
Bing Fan

Great improvement recently appeared in terms of efficient service delivery in wireless sensor networks (WSNs) for Internet of things (IoT). The IoT is mainly dependent on optimal routing of energy-aware WSNs for gathering data. In addition, as the wireless charging technology develops in leaps and bounds, the performance of rechargeable wireless sensor networks (RWSNs) is greatly ameliorated. Many researches integrated wireless energy transfer into data gathering to prolong network lifetime. However, the mobile collector cannot visit all nodes under the constraints of charging efficiency and gathering delay. Thus, energy consumption differences caused by different upload distances to collectors impose a great challenge in balancing energy. In this paper, we propose an adaptive dual-mode routing-based mobile data gathering algorithm (ADRMDGA) in RWSNs for IoT. The energy replenishment capability is reasonably allocated to low-energy nodes according to our objective function. Furthermore, the innovative adaptive dual-mode routing allows nodes to choose direct or multi-hop upload modes according to their relative upload distances. The empirical study confirms that ADRMDGA has excellent energy equilibrium and effectively extends the network lifetime.


2020 ◽  
Vol 16 (10) ◽  
pp. 155014772096804
Author(s):  
Inam Ul Haq ◽  
Qaisar Javaid ◽  
Zahid Ullah ◽  
Zafar Zaheer ◽  
Mohsin Raza ◽  
...  

Internet of things have emerged enough due to its applications in a wide range of fields such as governance, industry, healthcare, and smart environments (home, smart, cities, and so on). Internet of things–based networks connect smart devices ubiquitously. In such scenario, the role of wireless sensor networks becomes vital in order to enhance the ubiquity of the Internet of things devices with lower cost and easy deployment. The sensor nodes are limited in terms of energy storage, processing, and data storage capabilities, while their radio frequencies are very sensitive to noise and interference. These factors consequently threaten the energy consumption, lifetime, and throughput of network. One way to cope with energy consumption issue is energy harvesting techniques used in wireless sensor network–based Internet of things. However, some recent studies addressed the problems of clustering and routing in energy harvesting wireless sensor networks which either concentrate on energy efficiency or quality of service. There is a need of an adequate approach that can perform efficiently in terms of energy utilization as well as to ensure the quality of service. In this article, a novel protocol named energy-efficient multi-attribute-based clustering scheme (E2-MACH) is proposed which addresses the energy efficiency and communication reliability. It uses selection criteria of reliable cluster head based on a weighted function defined by multiple attributes such as link statistics, neighborhood density, current residual energy, and the rate of energy harvesting of nodes. The consideration of such parameters in cluster head selection helps to preserve the node’s energy and reduce its consumption by sending data over links possessing better signal-to-noise ratio and hence ensure minimum packet loss. The minimized packet loss ratio contributes toward enhanced network throughput, energy consumption, and lifetime with better service availability for Internet of things applications. A set of experiments using network simulator 2 revealed that our proposed approach outperforms the state-of-the-art low-energy adaptive clustering hierarchy and other recent protocols in terms of first-node death, overall energy consumption, and network throughput.


Sign in / Sign up

Export Citation Format

Share Document