scholarly journals A Novel Statistical Adhoc On-Demand Distance Vector Routing Protocol Technique is using for Preventing the Mobile Adhoc Network from Flooding Attack

Author(s):  
Gurpreet Singh, Ganpat Joshi

The Mobile Adhoc Networks are more vulnerable because in the (MANET) Mobile Adhoc Network all node works as data sink, transmitter, router. There is no centralized system in the Mobile Adhoc network, so the chances of the vulnerabilities are very high in the network. There are various security issues in the Mobile Adhoc Network. From the various attacks the flooding attacks are most difficult attacks that extremely affect in Mobile Adhoc Network. In this paper, a new statistical based technique is planned, which is used to discover the flooding attack in an positive approach than other approaches. In the planned of Statistical Ad-Hoc on Demand Distance Vector (SAODV) approach is used to detect malicious nodes in the Mobile Adhoc Network. In this technique, statistical threshold value is obtained from mean and variance. In this approach the value is utilize to locate the (RREQ) Route Request flooding attacker nodes in the Mobile Adhoc Network. The proposed method is capable because threshold values are calculated on the source of RREQs prepared by every node in the Mobile Addhoc Network. The simulation results clearly depict that the proposed approach has significant performance in the terms of throughput, delay, packet delivery ratio, and overhead.

2018 ◽  
Vol 7 (2.24) ◽  
pp. 489
Author(s):  
Shweta Ranjan Vikas ◽  
B Priyalakshmi ◽  
Nikita Gautam ◽  
Sairam Potti

The network security must be taken into consideration in wireless sensor networks. In our project, we take sensor node data falsification (SNDF) attack using malicious nodes and co-operative detection is used. Fusioncentre collects information from the nodes created in a cluster environment and makes a global decision. The protocol used here is Ad-hoc-on demand distance vector[5] (AODV) and the performance analysis is done using parameters such as throughput and End-to-end delay. The stimulation is done in NS2 using network animator and graphical results are taken.The throughput will be increased compared to the existing system whereas End-to-End delay will be decreased.  


Author(s):  
S. Maharaja ◽  
R. Jeyalakshmi ◽  
A.V. Sabarish Kanna ◽  
M. Deva Priya

A Mobile Adhoc Network (MANET) is prone to attacks. Adversaries take hold of the network, thus degrading their performance. Various attacks are prevalent in MANET, out of which Byzantine attack plays a vital role. A node or group of nodes present in the routing path between the source and the destination may be compromised due to Byzantine attack. In this paper, Cohen Kappa Reliability Coefficient based Mitigation (CKRCM) mechanism is proposed to deal with these attacks. The intermediate nodes are monitored by their neighbors for a timestamp. If the monitoring node does not receive an acknowledgment, then the nodes are perceived to be attacked. The trustworthiness of the nodes is built by computing the trusts and reliabilities of the nodes. It is seen that the proposed scheme outperforms the existing scheme in terms of Throughput, Packet Delivery Ratio (PDR) and Packet Loss Ratio (PLR).


A mobile ad-hoc network (MANET) is an infrastructure-less network of wireless nodes. The network topology may change quickly with respect to time, due to node mobility. The network is a disintegrated network, activities such as delivering messages by determining the topology essential to be implemented by the nodes themselves i.e., the routing activity will be unified into mobile nodes. Due to the lack of centralized administration in multihop routing and open environment, MANET’s are susceptible to attacks by compromised nodes; hence, to provide security also energy efficiency is a crucial issue. So as to decrease the hazards of malicious nodes and resolve energy consumption issues, a simple confidence-based protocol is built to evaluate neighbor’s behaviour using forwarding factors. The reactive Ad-hoc on-demand multipath distance vector routing protocol (AOMDV), is extended and confidence-based Ad-hoc on-demand distance vector (CBAOMDV) protocol, is implemented for MANET. This implemented protocol is able to find multiple routes in one route discovery. These routes are calculated by confidence values and hop counts. From there, the shortest path is selected which fulfills the requirements of data packets for reliability on confidence. Several experimentations have been directed to relate AOMDV and CBAOMDV protocols and the outcomes show that CBAOMDV advances throughput, packet delivery ratio, normalized routing load, and average energy consumption.


2021 ◽  
Vol 11 (2) ◽  
pp. 6979-6985
Author(s):  
A. K. Kazi ◽  
S. M. Khan

A Vehicular Ad-hoc Network (VANET) is a subclass of wireless ad-hoc networks, widely used in on-road vehicles and roadside equipment, having applications in various areas including passenger safety, smart traffic solutions, and connectivity on vehicles The VANET is the backbone of the Intelligent Transport System (ITS) that establishes connectivity between vehicles through a wireless medium. When it comes to the communication between high-speed vehicles there is the challenge of dynamic mobility. In order to provide a higher Packet Delivery Ratio (PDR) and increase the throughput, a new routing protocol called Dynamic Trilateral Enrolment (DyTE) is introduced which chooses a dynamic trilateral zone to find the destination vehicle by allowing only relevant nodes to participate in the communication process using the location coordinates of source and destination nodes. The proposed routing protocol is compared with Ad-hoc On-demand Distance Vector (AODV), Ad-hoc On-demand Multipath Distance Vector (AOMDV), and Dynamic Source Routing (DSR), and the results show remarkable improvement in reducing the Network Routing Load (NRL) and increasing the PDR and throughput of the network. DyTE has performed more efficiently in terms of PDR (23% approximately), throughput (26% approximately) and drastically minimized the NRL by a factor of almost 3.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1185 ◽  
Author(s):  
Xiaopeng Tan ◽  
Zhen Zuo ◽  
Shaojing Su ◽  
Xiaojun Guo ◽  
Xiaoyong Sun

With the rapid development of information technology and the increasing application of UAV in various fields, the security problems of unmanned aerial vehicle (UAV) communication network have become increasingly prominent. It has become an important scientific challenge to design a routing protocol that can provide efficient and reliable node to node packet transmission. In this paper, an efficient Digital Signature algorithm based on the elliptic curve cryptosystem is applied to routing protocol, and an improved security method suitable for on-demand routing protocol is proposed. The UAV communication network was simulated through the NS2 simulation platform, and the execution efficiency and safety of the improved routing protocol were analyzed. In the simulation experiment, the routing protocols of ad-hoc on demand distance vector (AODV), security ad-hoc on demand distance vector (SAODV), and improved security ad-hoc on demand distance vector (ISAODV) are compared in terms of the performance indicators of packet delivery rate, throughput, and end-to-end delay under normal conditions and when attacked by malicious nodes. The simulation results show that the improved routing protocol can effectively improve the security of the UAV communication network.


2021 ◽  
Vol 10 (1) ◽  
pp. 192-199
Author(s):  
Marwan Hamid Hassan ◽  
Salama A. Mostafa ◽  
Hairulnizam Mahdin ◽  
Aida Mustapha ◽  
Azizul Azhar Ramli ◽  
...  

The most important experiences we discovered from several disasters are that cellular networks were vulnerable, and the loss of the communication system may have a catastrophic consequence. Mobile ad-hoc networks (MANETs) play a significant role in the construction of campus, resident, battlefield and search/rescue region. MANET is an appropriate network for supporting a communication where is no permanent infrastructure. MANET is an effective network that uses to establishing urgent communication between rescue members in critical situations like, disaster or natural calamities. The sending and receiving data in MANET is depending on the routing protocols to adapt the dynamic topology and maintain the routing information. Consequently, This paper evaluates the performance of three routing protocols in MANET: ad-hoc on-demand distance vector (AODV), destination sequenced distance vector (DSDV), and ad-hoc on-demand multipath distance vector (AOMDV). These protocols are inherent from different types of routing protocols: single-path, multi-path, reactive and proactive mechanisms. The NS2 simulator is utilized to evaluate the quality of these protocols. Several metrics are used to assess the performance of these protocols such: packet delivery ratio (PDR), packet loss ratios (PLR), throughput (TP), and end-to-end delay (E2E delay). The outcomes reveal the AOMDV is the most suitable protocol for time-critical events of search and rescue missions.


Author(s):  
Narayan Thakre ◽  
Sameeksha Verma ◽  
Amit Chouksey

Vehicular Ad Hoc Networks (VANETs) are self-organizing, self-healing networks that offer wireless communication among vehicles and roadside equipment. Providing safety and comfort for drivers and passengers is a promising goal of those networks. Designing an applicable routing protocol according to the network application is one among the essential necessities for implementing a victorious vehicular network. In this paper, we tend to report the results of a study on routing protocols associated with conveyance applications and their communication desires. The main aim of our study was to spot that routing technique has higher performance in extremely mobile environment of VANET. The thesis works is based on comparison between Ad hoc on demand Distance Vector routing protocol (AODV), Modified Ad hoc on demand distance vector routing (MAODV) and Destination sequenced distance vector routing (DSDV) in VANET on the basis of packet delivery ratio and end-to-end delay. The tool which we used for the work of performance is Network Simulator 2 (NS-2).


Sign in / Sign up

Export Citation Format

Share Document