Particle Emissions from Gas Handling Components Measured According to the SEMATECH Test Methods

1995 ◽  
Vol 38 (1) ◽  
pp. 29-33
Author(s):  
R. Periasamy ◽  
D. Ensor ◽  
A. Clayton ◽  
R. Donovan ◽  
J. Riddle

Particle emission rates measured from ultra-high purity, cleanroom gas handling components following the test procedures specified in the SEMATECH test methods are described. A condensation nucleus particle counter (CNC) having a counting efficiency of 50 percent at 0.02 μm in diameter was used to measure the total particle contribution from the gas handling components. A spool piece was inserted to measure the baseline particle concentration of the test stand before the measurement of the test component was carried out. Eighteen test samples, six each from three suppliers (two domestic and one foreign), in each type of gas handling components (valves, point-of-use filters, pressure regulators), were tested using the revised test method. Particle contribution data obtained for fresh out-of-the-bag, stainless steel (SS) test samples, 1/4-in. in OD, from different manufacturers are summarized in this paper.

1982 ◽  
Vol 45 (13) ◽  
pp. 1257-1260 ◽  
Author(s):  
DALE L. SCHEUSNER

Methods to evaluate germicides can be grouped into three categories: standard laboratory tests, in-use tests and simulated-use tests. Standard laboratory methods, such as the Available Chlorine Germicidal Equivalent test, are specifically defined for reproducibility in any laboratory by any operator, but the test results often lack relevance to actual product-use conditions. In-use test methods are relevant to product-use; however, in-use test procedures do not permit proper controls to be included in the organism recovery methods. Contact plates give an estimate of organism numbers which is only 25% of the theoretical number of organisms present. Organism recovery using a swab, cellulose sponge or tube sampler give estimates of organisms ranging from 91 to 111% of theoretical. The tube sampler is a 1-in. length of flexible tubing having a 1-in. interior diameter and a smooth end, which can make a water-tight seal on a flat surface. Simulated use testing yields data which are relevant to actual product-use. A cafeteria tray is soiled, inoculated and cleaned in a manner to simulate actual product-use. This test method permits the necessary controls to be used. Tray-test reproducibility is as good as that of the other recovery methods tested and organism recovery is quantitative. The tray test provides a means for determining biological cleaning where the effect of both cleaning and germicidal activity are measured together.


1986 ◽  
Vol 84 ◽  
Author(s):  
George B. Mellinger

Summary:Standardized test methods that are currently in use or under development appear to adequately cover most of the testing that may be required to demonstrate compliance with the WAPS. It may be important to complete standardization of those tests that are under development, and to develop additional standardized tests for those specifications for which no standardized tests exist. A significant amount of work would be involved in this effort. Therefore, before this effort is undertaken, DOE must decide whether there is a need for a set of standardized test methods that would receive an “official approval” for use in waste compliance testing. If a set of approved tests is needed, DOE would need to determine what types of tests to include in the “approved list”, who should develop these tests, and which organizations should review and approve the test methods. Test method review and approval might be accomplished through the use of the Materials Review Board (MRB), an organization that was created by DOE for the purpose of reviewing and approving key test methods and data related to the repository licensing process. Alternatively, other means of standardizing these tests might be considered, such as processing the tests through the American Society for Testing and Materials for publication as ASTM standards.If a set of approved tests is adopted, producers would not be required to use these tests; however, if a producer wished to propose other tests for compliance testing, it would be reasonable to require that such test procedures undergo a review/approval process similar to that which the officially approved tests had undergone. Once approved, these alternate procedures could be used for compliance testing.


2003 ◽  
Vol 25 (6) ◽  
pp. 123-127 ◽  
Author(s):  
K. Rick Lung ◽  
Mary A. Gorko ◽  
Jennifer Llewelyn ◽  
Norman Wiggins

In the development of test methods for solid dosage forms, manual test procedures for assay and content uniformity often precede the development of automated test procedures. Since the mode of extraction for automated test methods is often slightly different from that of the manual test method, additional validation of an automated test method is usually required. In addition to compliance with validation guidelines, developers of automated test methods are often asked to demonstrate equivalence between the manual and automated test methods. There are problems associated with using the traditional zero-difference hypothesis tests (such as the Student's t-test) for demonstrating equivalence. The use of the Westlake Interval and Schuirmann's Two One-sided test as more rigorous methods of demonstrating equivalence is discussed.


2020 ◽  
Vol 27 (1) ◽  
pp. 89-96
Author(s):  
Klaus Heller ◽  
Moritz Hallmannseder ◽  
David Colin ◽  
Kalle Kind ◽  
Klaus Drechsler

AbstractTo achieve cost-efficient manufacturing and a high part quality in Thermoset Automated Fiber Placement (TS-AFP), knowledge about the interaction between material and process parameters is of special interest. Material properties of prepregs are well known at the cured state of the resin. However, there are no standardized test procedures for the mechanical behavior of the uncured prepreg tapes. To investigate the intra-ply shear deformation behavior of uncured unidirectional prepreg tapes, we compared several measurement procedures and conducted experiments for rheometer based tests using 8552/AS4 material. We identified a rotational parallel platens rheometer test method and a torsion bar rheometer test method to be suitable. Experiments using both methods revealed that the Torsion Bar Test has a higher repeatability and the analysis is less complex. Furthermore, first results show that changes in material properties caused by aging can be analyzed using this method. In the future,we will use the Torsion Bar Test to characterize changes in deformation behavior due to material aging as well as material modifications. By this, we will be able to provide data for the material modeling thus enabling the prediction of lay-up defects such as buckling due to steering.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (6) ◽  
pp. 24-28
Author(s):  
CORY JAY WILSON ◽  
BENJAMIN FRANK

TAPPI test T811 is the specified method to ascertain ECT relative to box manufacturer’s certification compliance of corrugated fiberboard under Rule 41/ Alternate Item 222. T811 test sample heights were derived from typical board constructions at the time of the test method’s initial development. New, smaller flute sizes have since been developed, and the use of lighter weight boards has become more common. The T811 test method includes sample specifications for typical A-flute, B-flute, and C-flute singlewall (and doublewall and triplewall) structures, but not for newer thinner E-flute or F-flute structures. This research explores the relationship of ECT sample height to measured compressive load, in an effort to determine valid E-flute and F-flute ECT sample heights for use with the T811 method. Through this process, it identifies challenges present in our use of current ECT test methods as a measure of intrinsic compressive strength for smaller flute structures. The data does not support the use of TAPPI T 811 for ECT measurement for E and F flute structures, and demonstrates inconsistencies with current height specifi-cations for some lightweight B flute.


Machines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 4 ◽  
Author(s):  
Luqman S. Maraaba ◽  
Zakariya M. Al-Hamouz ◽  
Abdulaziz S. Milhem ◽  
Ssennoga Twaha

The application of line-start permanent magnet synchronous motors (LSPMSMs) is rapidly spreading due to their advantages of high efficiency, high operational power factor, being self-starting, rendering them as highly needed in many applications in recent years. Although there have been standard methods for the identification of parameters of synchronous and induction machines, most of them do not apply to LSPMSMs. This paper presents a study and analysis of different parameter identification methods for interior mount LSPMSM. Experimental tests have been performed in the laboratory on a 1-hp interior mount LSPMSM. The measurements have been validated by investigating the performance of the machine under different operating conditions using a developed qd0 mathematical model and an experimental setup. The dynamic and steady-state performance analyses have been performed using the determined parameters. It is found that the experimental results are close to the mathematical model results, confirming the accuracy of the studied test methods. Therefore, the output of this study will help in selecting the proper test method for LSPMSM.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2315
Author(s):  
Christian Meltebrink ◽  
Tom Ströer ◽  
Benjamin Wegmann ◽  
Cornelia Weltzien ◽  
Arno Ruckelshausen

As an essential part for the development of autonomous agricultural robotics, the functional safety of autonomous agricultural machines is largely based on the functionality and robustness of non-contact sensor systems for human protection. This article presents a new step in the development of autonomous agricultural machine with a concept and the realization of a novel test method using a dynamic test stand on an agricultural farm in outdoor areas. With this test method, commercially available sensor systems are tested in a long-term test around the clock for 365 days a year and 24 h a day on a dynamic test stand in continuous outdoor use. A test over a longer period of time is needed to test as much as possible all occurring environmental conditions. This test is determined by the naturally occurring environmental conditions. This fact corresponds to the reality of unpredictable/determinable environmental conditions in the field and makes the test method and test stand so unique. The focus of the developed test methods is on creating own real environment detection areas (REDAs) for each sensor system, which can be used to compare and evaluate the autonomous human detection of the sensor systems for the functional safety of autonomous agricultural robots with a humanoid test target. Sensor manufacturers from industry and the automotive sector provide their sensor systems to have their sensors tested in cooperation with the TÜV.


2014 ◽  
Vol 687-691 ◽  
pp. 3110-3115
Author(s):  
Gu Li ◽  
Zi Ming Fu ◽  
Jie Feng Yan ◽  
Bing Wen Li ◽  
Zhi Rong Cen

This paper analyzes and studies the definition of the voltage transformer secondary load, examines the practical purposes of the measured values of the voltage transformer secondary load, and presents a variety of testing methods to analyze and compare the differences. This paper gives the test methods of the voltage transformer secondary load when the connection of the voltage transformer is the Y / Y in a three-phase three-wire power supply system, filling the blank of this type of test method in the industry. When other units within the industry carry out such work, the conclusions of this paper are available for reference, and the conclusions of this paper can be referred when drafting relevant regulations in the future.


Sign in / Sign up

Export Citation Format

Share Document