scholarly journals ENHANCED PARTICIPANTS' REGISTRATION MODEL ON OPEN PUBLIC EVENTS

Author(s):  
Aigars Andersons ◽  
Siegfried Ritter ◽  
Rafail Prodani ◽  
Jozef Bushati

The Digital transformation (DT) has challenged most of the Event Management (EM) services at a time when organizers of open public events still faced a lot of manual operations upon registration of the public event’s participants. This survey demonstrates a model to increase a level of digitalization and use of technology, with increased self-service level for registered participants and digital data transfer. The model is based on outcomes from the series of several case studies, practical tests and research activities in Latvia, Albania, and Germany. The paper examines different ways how organizers are able to innovate their routine activities and encourage the broader public to learn and use various digital technologies: Radio-frequency identification (RFID), Near-field Communication (NFC), Quick Response (QR) codes and Mobile apps with a purpose to link the physical and the digital world in the one coherent model. In this research the major part of event management process modelling had been done by Business process Model and Notation (BPMN2) approach. The approach proposed by authors aims to reduce the costs and workload of organizers associated with participants’ registration in open public events where preliminary registration is still practically impossible or forbidden because of personal data protection issues.  

2019 ◽  
Author(s):  
Priscilla Ulguim

We live in the information age, and our lives are increasingly digitized. Our quotidian has been transformed over the last fifty years by the adoption of innovative networking and computing technology. The digital world presents opportunities for public archaeology to engage, inform and interact with people globally. Yet, as more personal data are published online, there are growing concerns over privacy, security, and the long-term implications of sharing digital information. These concerns extend beyond the living, to the dead, and are thus important considerations for archaeologists who share the stories of past people online. This analysis argues that the ‘born-digital’ records of humanity may be considered as public digital mortuary landscapes, representing death, memorialization and commemoration. The potential for the analysis of digital data from these spaces could result in a phenomenon approaching immortality, whereby artificial intelligence is applied to the data of the dead. This paper investigates the ethics of a digital public archaeology of the dead while considering the future of our digital lives as mnemonic spaces, and their implications for the living.Ulguim, P. F. 2018. Digital Remains Made Public: Sharing the Dead Online and Our Future Digital Mortuary Landscape. AP: Online Journal in Public Archaeology 8(2):153. https://doi.org/10.23914/ap.v8i2.162


2018 ◽  
Vol 8 (2) ◽  
pp. 153
Author(s):  
Priscilla Ulguim

We live in the information age, and our lives are increasingly digitized. Our quotidian has been transformed over the last fifty years by the adoption of innovative networking and computing technology. The digital world presents opportunities for public archaeology to engage, inform and interact with people globally. Yet, as more personal data are published online, there are growing concerns over privacy, security, and the long-term implications of sharing digital information. These concerns extend beyond the living, to the dead, and are thus important considerations for archaeologists who share the stories of past people online. This analysis argues that the ‘born-digital’ records of humanity may be considered as public digital mortuary landscapes, representing death, memorialization and commemoration. The potential for the analysis of digital data from these spaces could result in a phenomenon approaching immortality, whereby artificial intelligence is applied to the data of the dead. This paper investigates the ethics of a digital public archaeology of the dead while considering the future of our digital lives as mnemonic spaces, and their implications for the living.


2019 ◽  
Vol 12 (1) ◽  
pp. 7-20
Author(s):  
Péter Telek ◽  
Béla Illés ◽  
Christian Landschützer ◽  
Fabian Schenk ◽  
Flavien Massi

Nowadays, the Industry 4.0 concept affects every area of the industrial, economic, social and personal sectors. The most significant changings are the automation and the digitalization. This is also true for the material handling processes, where the handling systems use more and more automated machines; planning, operation and optimization of different logistic processes are based on many digital data collected from the material flow process. However, new methods and devices require new solutions which define new research directions. In this paper we describe the state of the art of the material handling researches and draw the role of the UMi-TWINN partner institutes in these fields. As a result of this H2020 EU project, scientific excellence of the University of Miskolc can be increased and new research activities will be started.


2019 ◽  
Vol 15 (01) ◽  
pp. 1-8
Author(s):  
Ashish C Patel ◽  
C G Joshi

Current data storage technologies cannot keep pace longer with exponentially growing amounts of data through the extensive use of social networking photos and media, etc. The "digital world” with 4.4 zettabytes in 2013 has predicted it to reach 44 zettabytes by 2020. From the past 30 years, scientists and researchers have been trying to develop a robust way of storing data on a medium which is dense and ever-lasting and found DNA as the most promising storage medium. Unlike existing storage devices, DNA requires no maintenance, except the need to store at a cool and dark place. DNA has a small size with high density; just 1 gram of dry DNA can store about 455 exabytes of data. DNA stores the informations using four bases, viz., A, T, G, and C, while CDs, hard disks and other devices stores the information using 0’s and 1’s on the spiral tracks. In the DNA based storage, after binarization of digital file into the binary codes, encoding and decoding are important steps in DNA based storage system. Once the digital file is encoded, the next step is to synthesize arbitrary single-strand DNA sequences and that can be stored in the deep freeze until use.When there is a need for information to be recovered, it can be done using DNA sequencing. New generation sequencing (NGS) capable of producing sequences with very high throughput at a much lower cost about less than 0.1 USD for one MB of data than the first sequencing technologies. Post-sequencing processing includes alignment of all reads using multiple sequence alignment (MSA) algorithms to obtain different consensus sequences. The consensus sequence is decoded as the reversal of the encoding process. Most prior DNA data storage efforts sequenced and decoded the entire amount of stored digital information with no random access, but nowadays it has become possible to extract selective files (e.g., retrieving only required image from a collection) from a DNA pool using PCR-based random access. Various scientists successfully stored up to 110 zettabytes data in one gram of DNA. In the future, with an efficient encoding, error corrections, cheaper DNA synthesis,and sequencing, DNA based storage will become a practical solution for storage of exponentially growing digital data.


Author(s):  
Jordan Frith

The phrase the Internet of things was originally coined in a 1999 presentation about attaching radio frequency identification (RFID) tags to individual objects. These tags would make the objects machine-readable, uniquely identifiable, and, most importantly, wirelessly communicative with infrastructure. This chapter evaluates RFID as a piece of mobile communicative infrastructure, and it examines two emerging forms: near-field communication (NFC) and Bluetooth low-energy beacons. The chapter shows how NFC and Bluetooth low-energy beacons may soon move some types of RFID to smartphones, in this way evolving the use of RFID in payment and transportation and enabling new practices of post-purchasing behaviors.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 188
Author(s):  
Žiga Korošak ◽  
Nejc Suhadolnik ◽  
Anton Pleteršek

The aim of this work is to tackle the problem of modulation wave shaping in the field of near field communication (NFC) radio frequency identification (RFID). For this purpose, a high-efficiency transmitter circuit was developed to comply with the strict requirements of the newest EMVCo and NFC Forum specifications for pulse shapes. The proposed circuit uses an outphasing modulator that is based on a digital-to-time converter (DTC). The DTC based outphasing modulator supports amplitude shift keying (ASK) modulation, operates at four times the 13.56 MHz carrier frequency and is made fully differential in order to remove the parasitic phase modulation components. The accompanying transmitter logic includes lookup tables with programmable modulation pulse wave shapes. The modulator solution uses a 64-cell tapped current controlled fully differential delay locked loop (DLL), which produces a 360° delay at 54.24 MHz, and a glitch-free multiplexor to select the individual taps. The outphased output from the modulator is mixed to create an RF pulse width modulated (PWM) output, which drives the antenna. Additionally, this implementation is fully compatible with D-class amplifiers enabling high efficiency. A test circuit of the proposed differential multi-standard reader’s transmitter was simulated in 40 nm CMOS technology. Stricter pulse shape requirements were easily satisfied, while achieving an output linearity of 0.2 bits and maximum power consumption under 7.5 mW.


2021 ◽  
Vol 26 (4) ◽  
Author(s):  
Jordan Samhi ◽  
Kevin Allix ◽  
Tegawendé F. Bissyandé ◽  
Jacques Klein

AbstractDue to the convenience of access-on-demand to information and business solutions, mobile apps have become an important asset in the digital world. In the context of the COVID-19 pandemic, app developers have joined the response effort in various ways by releasing apps that target different user bases (e.g., all citizens or journalists), offer different services (e.g., location tracking or diagnostic-aid), provide generic or specialized information, etc. While many apps have raised some concerns by spreading misinformation or even malware, the literature does not yet provide a clear landscape of the different apps that were developed. In this study, we focus on the Android ecosystem and investigate Covid-related Android apps. In a best-effort scenario, we attempt to systematically identify all relevant apps and study their characteristics with the objective to provide a first taxonomy of Covid-related apps, broadening the relevance beyond the implementation of contact tracing. Overall, our study yields a number of empirical insights that contribute to enlarge the knowledge on Covid-related apps: (1) Developer communities contributed rapidly to the COVID-19, with dedicated apps released as early as January 2020; (2) Covid-related apps deliver digital tools to users (e.g., health diaries), serve to broadcast information to users (e.g., spread statistics), and collect data from users (e.g., for tracing); (3) Covid-related apps are less complex than standard apps; (4) they generally do not seem to leak sensitive data; (5) in the majority of cases, Covid-related apps are released by entities with past experience on the market, mostly official government entities or public health organizations.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5060
Author(s):  
Malak Abid Ali Khan ◽  
Hongbin Ma ◽  
Syed Muhammad Aamir ◽  
Ying Jin

(1) Background: The scientific development in the field of industrialization demands the automization of electronic shelf labels (ESLs). COVID-19 has limited the manpower responsible for the frequent updating of the ESL system. The current ESL uses QR (quick response) codes, NFC (near-field communication), and RFID (radio-frequency identification). These technologies have a short range or need more manpower. LoRa is one of the prominent contenders in this category as it provides long-range connectivity with less energy harvesting and location tracking. It uses many gateways (GWs) to transmit the same data packet to a node, which causes collision at the receiver side. The restriction of the duty cycle (DC) and dependency of acknowledgment makes it unsuitable for use by the common person. The maximum efficiency of pure ALOHA is 18.4%, while that of slotted ALOHA is 36.8%, which makes LoRa unsuitable for industrial use. It can be used for applications that need a low data rate, i.e., up to approximately 27 Kbps. The ALOHA mechanism can cause inefficiency by not eliminating fast saturation even with the increasing number of gateways. The increasing number of gateways can only improve the global performance for generating packets with Poisson law having a uniform distribution of payload of 1~51 bytes. The maximum expected channel capacity usage is similar to the pure ALOHA throughput. (2) Methods: In this paper, the improved ALOHA mechanism is used, which is based on the orthogonal combination of spreading factor (SF) and bandwidth (BW), to maximize the throughput of LoRa for ESL. The varying distances (D) of the end nodes (ENs) are arranged based on the K-means machine learning algorithm (MLA) using the parameter selection principle of ISM (industrial, scientific and medical) regulation with a 1% DC for transmission to minimize the saturation. (3) Results: The performance of the improved ALOHA degraded with the increasing number of SFs and as well ENs. However, after using K-mapping, the network changes and the different number of gateways had a greater impact on the probability of successful transmission. The saturation decreased from 57% to 1~2% by using MLA. The RSSI (Received Signal Strength Indicator) plays a key role in determining the exact position of the ENs, which helps to improve the possibility of successful transmission and synchronization at higher BW (250 kHz). In addition, a high BW has lower energy consumption than a low BW at the same DC with a double-bit rate and almost half the ToA (time on-air).


Author(s):  
Paul Henman

Using digital tools in administrative decision-making—from automation of relatively simple decisions to artificial intelligence judgements—both enhances and challenges the operation of administrative justice. By beginning with an understanding of digital algorithms as comprising computer code, digital data, and use context, this chapter highlights challenges for administrative justice in administrative discretion, data challenges, automating decisions and errors, information about administrative justice, appealability and accountability responsibility, and explainability. The chapter then examines legal, policy, and technological responses to strengthen administrative justice, including expanding digital rights, bolstering review rights via providing explanations and software code, and instituting organizational governance innovations and technical standards.


2019 ◽  
Vol 25 (5) ◽  
pp. 972-994 ◽  
Author(s):  
Michael Fellmann ◽  
Agnes Koschmider ◽  
Ralf Laue ◽  
Andreas Schoknecht ◽  
Arthur Vetter

Purpose Patterns have proven to be useful for documenting general reusable solutions to a commonly occurring problem. In recent years, several different business process management (BPM)-related patterns have been published. Despite the large number of publications on this subject, there is no work that provides a comprehensive overview and categorization of the published business process model patterns. The purpose of this paper is to close this gap by providing a taxonomy of patterns as well as a classification of 89 research works. Design/methodology/approach The authors analyzed 280 research articles following a structured iterative procedure inspired by the method for taxonomy development from Nickerson et al. (2013). Using deductive and inductive reasoning processes embedded in concurrent as well as joint research activities, the authors created a taxonomy of patterns as well as a classification of 89 research works. Findings In general, the findings extend the current understanding of BPM patterns. The authors identify pattern categories that are highly populated with research works as well as categories that have received far less attention such as risk and security, the ecological perspective and process architecture. Further, the analysis shows that there is not yet an overarching pattern language for business process model patterns. The insights can be used as starting point for developing such a pattern language. Originality/value Up to now, no comprehensive pattern taxonomy and research classification exists. The taxonomy and classification are useful for searching pattern works which is also supported by an accompanying website complementing the work. In regard to future research and publications on patterns, the authors derive recommendations regarding the content and structure of pattern publications.


Sign in / Sign up

Export Citation Format

Share Document