scholarly journals Response of Terrestrial Insect Community to the Vegetation Invasion at a Sand-Bed Stream

2017 ◽  
Vol 4 (1) ◽  
pp. 44-53
Author(s):  
Geonho Cho ◽  
Kang-Hyun Cho
2019 ◽  
Vol 107 ◽  
pp. 105624
Author(s):  
B.S. Godoy ◽  
A.P.J. Faria ◽  
L. Juen ◽  
L. Sara ◽  
L.G. Oliveira

2019 ◽  
Vol 70 (4) ◽  
pp. 541 ◽  
Author(s):  
Martha J. Zapata ◽  
S. Mažeika P. Sullivan

Variability in the density and distribution of adult aquatic insects is an important factor mediating aquatic-to-terrestrial nutritional subsidies in freshwater ecosystems, yet less is understood about insect-facilitated subsidy dynamics in estuaries. We surveyed emergent (i.e. adult) aquatic insects and nearshore orb-weaving spiders of the families Tetragnathidae and Araneidae in a subtropical estuary of Florida (USA). Emergent insect community composition varied seasonally and spatially; densities were lower at high- than low-salinity sites. At high-salinity sites, emergent insects exhibited lower dispersal ability and a higher prevalence of univoltinism than low- and mid-salinity assemblages. Orb-weaving spider density most strongly tracked emergent insect density rates at low- and mid-salinity sites. Tetragnatha body condition was 96% higher at high-salinity sites than at low-salinity sites. Our findings contribute to our understanding of aquatic insect communities in estuarine ecosystems and indicate that aquatic insects may provide important nutritional subsidies to riparian consumers despite their depressed abundance and diversity compared with freshwater ecosystems.


2014 ◽  
Vol 104 (4) ◽  
pp. 418-431 ◽  
Author(s):  
M. Soufbaf ◽  
Y. Fathipour ◽  
J. Karimzadeh ◽  
M.P. Zalucki

AbstractTo understand the effect of plant availability/structure on the population size and dynamics of insects, a specialist herbivore in the presence of two of its parasitoids was studied in four replicated time-series experiments with high and low plant availabilities; under the latter condition, the herbivore suffered from some periods of resource limitation (starvation) and little plant-related structural refuges. Population dynamics of the parasitoid Cotesia vestalis was governed mainly by the delayed density-dependent process under both plant setups. The parasitoid, Diadegma semiclausum, under different plant availabilities and different coexistence situations (either +competitor or –competitor) showed dynamics patterns that were governed mainly by the delayed density process (significant lags at weeks 2–4). Both the competing parasitoids did not experience beneficial or costly interferences from each other in terms of their own population size when the plant resource was limited. Variation in the Plutella xylostella population under limited plant availability is higher than that under the other plant setup. For both parasitoids, under limited plant setup, the extinction risk was lower when parasitoids were engaged in competition, while under the unlimited plant setup, the mentioned risk was higher when parasitoids competed. In this situation, parasitoids suffered from two forces, competition and higher escaped hosts.


1989 ◽  
Vol 46 (6) ◽  
pp. 1047-1061 ◽  
Author(s):  
Robert J. Sebastien ◽  
Reinhart A. Brust ◽  
David M. Rosenberg

The insecticide methoxychlor was applied at 300 μg∙L−1 for 15 min to a riffie on the Souris River, located about 18 km downstream from Souris, Manitoba. Physical, chemical, and biological variables were measured and aquatic insect community structure was monitored using drift, emergence trap, and artificial substrate samplers. All taxa monitored, irrespective of functional feeding group, drifted catastrophically for 4–24 h immediately following methoxychlor addition. Different species demonstrated varying abilities to recoionize artificial substrates following treatment. Species having a high propensity to drift naturally, recolonized most rapidly. Taxa that required the longest period to recoionize following methoxychlor treatment were generally univoltine, had a low propensity to drift, and a limited ability to disperse as adults. Impact of methoxychlor was influenced by the prevalent life-cycle stage of some species at the time of treatment. Catostomus commersoni fry and juvenile Orconectes virilis were more sensitive to methoxychlor than previous research on mature individuals has indicated. Invertebrate drift appeared to be more sensitive to pesticide treatment than benthic invertebrates on artificial substrates. Species richness and total numbers of drift were significantly reduced for at least 33 d following treatment, whereas richness and numbers on artificial substrates were significantly lower for only 4 and 8 d, respectively.


Author(s):  
Zhuang Wang ◽  
Lijuan Zhao ◽  
Jiaqi Liu ◽  
Yajie Yang ◽  
Juan Shi ◽  
...  

To study the effect of the invasion of Bursaphelenchus xylophilus on the functional relationship between woody plants and insect communities, the populations of tree species and insect communities were investigative in the Masson pine forests with different infestation durations of B. xylophilus. In this study, the number of Pinus massoniana began to decrease sharply, whereas the total number of other tree species in the arboreal layer increased gradually with the infestation duration of B. xylophilus. The principal component analysis ordination biplot shows that there was a significant change in the spatial distribution of woody plant species in different Masson pine forest stands. Additionally, a total of 7,188 insect specimens was obtained. The insect population showed an upward trend in stand types with the increase of pine wilt disease infection periods, which demonstrated that the insect community had been significantly affected by the invasion of B. xylophilus. The structure of insect functional groups changed from herbivorous (He) > omnivorous (Om) > predatory (Pr) > parasitic (Pa) > detritivorous (De) in the control stand to He > Pa > Om, De > Pr after B. xylophilus infestation in the forests. The results showed that the populations of He, Pa, and De increased after the invasion of B. xylophilus, but the populations of Pr decreased. Moreover, the redundancy analysis ordination bi-plots reflected the complicated functional relationship between woody plant communities and insects after the invasion of B. xylophilus. The present study provides insights into the changes in the community structure of woody plants and insects, as well as the functional relationship between woody plant communities and insect communities after invasion of B. xylophilus.


2020 ◽  
Author(s):  
Scott Hotaling ◽  
Joanna L. Kelley ◽  
Paul B. Frandsen

AbstractAquatic insects comprise 10% of all insect diversity, can be found on every continent except Antarctica, and are key components of freshwater ecosystems. Yet aquatic insect genome biology lags dramatically behind that of terrestrial insects. If genomic effort was spread evenly, one aquatic insect genome would be sequenced for every ∼9 terrestrial insect genomes. Instead, ∼24 terrestrial insect genomes have been sequenced for every aquatic insect genome. This discrepancy is even more dramatic if the quality of genomic resources is considered; for instance, while no aquatic insect genome has been assembled to the chromosome level, 29 terrestrial insect genomes spanning four orders have. We argue that a lack of aquatic insect genomes is not due to any underlying difficulty (e.g., small body sizes or unusually large genomes) yet it is severely hampering aquatic insect research at both fundamental and applied scales. By expanding the availability of aquatic insect genomes, we will gain key insight into insect diversification and empower future research for a globally important taxonomic group.Simple SummaryAquatic insects comprise 10% of all insect diversity, can be found on every continent except Antarctica, and are key components of freshwater ecosystems. Yet aquatic insect genome biology lags dramatically behind that of terrestrial insects. If genomic effort was spread evenly, one aquatic insect genome would be sequenced for every ∼9 terrestrial insect genomes. Instead, ∼24 terrestrial insect genomes have been sequenced for every aquatic insect genome. We argue that the limited availability of aquatic insect genomes is not due to practical limitations—e.g., small body sizes or overly complex genomes—but instead reflects a lack of research interest. We call for targeted efforts to expand the availability of aquatic insect genomic resources to gain key molecular insight into insect diversification and empower future research.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10862
Author(s):  
Panyapon Pumkaeo ◽  
Junko Takahashi ◽  
Hitoshi Iwahashi

Studies on bioaerosols have primarily focused on their chemical and biological compositions and their impact on public health and the ecosystem. However, most bioaerosol studies have only focused on viruses, bacteria, fungi, and pollen. To assess the diversity and composition of airborne insect material in particulate matter (PM) for the first time, we attempted to detect DNA traces of insect origin in dust samples collected over a two-year period. These samples were systematically collected at one-month intervals and categorized into two groups, PM2.5 and PM10, based on the aerodynamic diameter of the aerosol particles. Cytochrome-c oxidase I (COI) was the barcoding region used to identify the origins of the extracted DNA. The airborne insect community in these samples was analyzed using the Illumina MiSeq platform. The most abundant insect sequences belonged to the order Hemiptera (true bugs), whereas order Diptera were also detected in both PM2.5 and PM10 samples. Additionally, we inferred the presence of particulates of insect origin, such as brochosomes and integument particles, using scanning electron microscopy (SEM). This provided additional confirmation of the molecular results. In this study, we demonstrated the benefits of detection and monitoring of insect information in bioaerosols for understanding the source and composition. Our results suggest that the PM2.5 and PM10 groups are rich in insect diversity. Lastly, the development of databases can improve the identification accuracy of the analytical results.


Author(s):  
Natalia Pirimova ◽  
Alison Parker ◽  
Lesley Campbell

Abiotic environmental variation can have dramatic effects on plant floral morphology and nectar or pollen rewards. In response, pollinators may change their foraging behavior and distribution and if pollinators change their foraging behavior or distribution, this could have dramatic effects on the reproductive success of plant populations. To start tackling this problem, we measured the response of floral morphology (corolla diameter, stamen length, and ovule number) of Raphanus raphanistrum to experimental manipulations of field soil moisture. As soil moisture increased, corolla diameter and anther length grew. We expect these changes to provide more visitation rewards for insects in moist conditions. Therefore, water availability influences growth and development of flowers, and may have dramatic effects on insect community dynamics. KEYWORDS: Floral Rewards, Climate, Rain-out Shelters, Flower Morphology, Raphanus raphanistrum, Brassicaceae


Author(s):  
Zachariah Gompert ◽  
Lauren Lucas

Long term studies of wild populations indicate that natural selection can cause rapid and dramatic changes in traits, with spatial and temporal variation in the strength of selection a critical driver of genetic variation in natural populations. In 2012, we began a long term study of genome-wide molecular evolution in populations of the butterfly Lycaeides ideas in the Greater Yellowstone Area (GYA). We aimed to quantify the role of environment-dependent selection on evolution in these populations. Building on previous work, in 2017 we collected new samples, incorporated distance sampling, and surveyed the insect community at each site. We also defined the habitat boundary at anew, eleventh site. Our preliminary analyses suggest that both genetic drift and selection are important drivers in this system.   Featured photo from Figure 1 in report.


Sign in / Sign up

Export Citation Format

Share Document