scholarly journals A reappraisal of active tectonics along the Fethiye-Burdur trend, southwestern Turkey

2021 ◽  
Author(s):  
Edwin Nissen ◽  
Mussaver Didem Cambaz ◽  
Élyse Gaudreau ◽  
Andrew Howell ◽  
Ezgi Karasözen ◽  
...  

We investigate active tectonics in southwestern Turkey along the trend between Fethiye, near the eastern end of the Hellenic subduction zone, and Burdur, on the Anatolian plateau. Previously, regional GPS velocity data have been used to propose either (1) a NE-trending zone of strike-slip faulting coined the Fethiye-Burdur Fault Zone, or (2) a mix of uniaxial and radial extension accommodated by normal faults with diverse orientations. We test these models against the available earthquake data, updated in light of recent earthquakes at Acıpayam (20 March 2019, Mw 5.6) and Bozkurt (8 August 2019, Mw 5.8) — the largest in this region in the last two decades — and at Arıcılar (24 November 2017, Mw 5.3). Using Sentinel-1 InSAR and seismic waveforms and arrival times, we show that the Acıpayam, Bozkurt and Arıcılar earthquakes were buried ruptures on pure normal faults with subtle or indistinct topographic expressions. By exploiting ray paths shared with these well-recorded modern events, we relocate earlier instrumental seismicity throughout southwestern Turkey. We find that the 1971 Mw 6.0 Burdur earthquake likely ruptured a NW-dipping normal fault in an area of indistinct geomorphology near Salda Lake, contradicting earlier studies that place it on well-expressed faults bounding the Burdur basin. Overall, the northern Fethiye-Burdur trend is characterized by orthogonal normal faulting, consistent with radial extension and likely responsible for the distinct physiography of Turkey's 'Lake District'. The southern Fethiye-Burdur trend is dominated by ESE-WNW trending normal faulting, even though most faults evident in the topography strike NE-SW. This hints at a recent change in regional strain, perhaps related to eastward propagation of the Gökova graben into the area or to rapid subsidence of the Rhodes basin. Overall, our results support GPS-derived tectonic models that depict a mix of uniaxial and radial extension throughout southwestern Turkey, with no evidence for major, active strike-slip faults anywhere along the Fethiye-Burdur trend. Normal faulting orientations are consistent with a stress field driven primarily by contrasts in gravitational potential energy between the elevated Anatolian plateau and the low-lying Rhodes and Antalya basins.

Geophysics ◽  
1998 ◽  
Vol 63 (1) ◽  
pp. 223-230 ◽  
Author(s):  
Sergio Chávez‐Pérez ◽  
John N. Louie ◽  
Sathish K. Pullammanappallil

Motivated by the need to image faults to test Cenozoic extension models for the Death Valley region of the western basin and range province, an area of strong lateral velocity variations, we examine the geometry of normal faulting in southern Death Valley by seismic depth imaging. We analyze COCORP Death Valley Line 9 to attain an enhanced image of shallow fault structure to 2.5 km depth. Previous work used standard seismic processing to infer normal faults from bed truncations, displacement of horizontal reflectors, and diffractions. We obtain a detailed velocity model by nonlinear optimization of first‐ arrival times picked from shot gathers, examine the unprocessed data for fault reflections, and use a Kirchhoff prestack depth imaging procedure to handle lateral velocity variations and arbitrary dips properly. Fault‐plane reflections reveal the listric true‐depth geometry of the normal fault at the Black Mountains range front in southern Death Valley. This is consistent with the concept of low‐angle extension in this region and strengthens its association with crustal‐scale magmatic plumbing.


2020 ◽  
Vol 110 (3) ◽  
pp. 1090-1100
Author(s):  
Ronia Andrews ◽  
Kusala Rajendran ◽  
N. Purnachandra Rao

ABSTRACT Oceanic plate seismicity is generally dominated by normal and strike-slip faulting associated with active spreading ridges and transform faults. Fossil structural fabrics inherited from spreading ridges also host earthquakes. The Indian Oceanic plate, considered quite active seismically, has hosted earthquakes both on its active and fossil fault systems. The 4 December 2015 Mw 7.1 normal-faulting earthquake, located ∼700  km south of the southeast Indian ridge in the southern Indian Ocean, is a rarity due to its location away from the ridge, lack of association with any mapped faults and its focal depth close to the 800°C isotherm. We present results of teleseismic body-wave inversion that suggest that the earthquake occurred on a north-northwest–south-southeast-striking normal fault at a depth of 34 km. The rupture propagated at 2.7  km/s with compact slip over an area of 48×48  km2 around the hypocenter. Our analysis of the background tectonics suggests that our chosen fault plane is in the same direction as the mapped normal faults on the eastern flanks of the Kerguelen plateau. We propose that these buried normal faults, possibly the relics of the ancient rifting might have been reactivated, leading to the 2015 midplate earthquake.


Author(s):  
Jiuyuan Yang ◽  
Caijun Xu ◽  
Yangmao Wen ◽  
Guangyu Xu

Abstract On 22 July 2020, an Mw 6.3 earthquake with a predominantly normal-faulting mechanism struck the Yibug Caka fault zone, central Tibet, where the overall tectonic environment is characterized by left-lateral strike-slip motion. This event offers a chance to gain insight into the tectonic deformation and the cause of shallow normal-faulting earthquakes in this little studied region. Here, we use Sentinel-1A/B Interferometric Synthetic Aperture Radar data to investigate the coseismic and postseismic deformation related to this earthquake. The earthquake ruptured a previously mapped West Yibug Caka fault and is dominated by normal slip with a peak value of 1.9 m at depth of 6.9 km. Postseismic deformation analysis indicates that the observed subsidence signals of up to ∼4.7 cm are a consequence of afterslip. Most of the afterslip is confined at depths between 0.8 and 8.4 km, peaking at 0.27 m at depth of 6.1 km. The significant coseismic slip and afterslip involved in the earthquake highlights a complex interaction between the major normal fault and the secondary synthetic fault. By an integrated analysis of the inversions, regional geology geomorphology, fault kinematics, and seismicity background, we propose a tectonic model that attributes the occurrence of this normal-faulting event to the release of extensional stress in a stepover zone controlled by the northeast-striking sinistral strike-slip Riganpei Co fault and Bu Zang Ai fault. Compared with that the structural stepover often acts as a barrier to affect the propagation of earthquake rupture, our study demonstrates that the failure of a stepover may potentially induce the occurrence of earthquake along the bounding strike-slip faults.


2021 ◽  
Vol 873 (1) ◽  
pp. 012071
Author(s):  
Anggraini Rizkita Puji ◽  
Mudrik Rahmawan Daryono ◽  
Danny Hilman Natawidjaja

Abstract The 2018 Mw 7.5 earthquake in Palu, Central Sulawesi, resulting in ~2,000 fatalities and estimated economic losses of ~22.8 trillion Indonesian Rupiah, according to the report of BAPPENAS and Central Sulawesi Provincial-Government. Therefore, it is necessary to prevent similar disaster in the future by further detailed studies of any other potential sources that are capable of generating such hazards. Palu City is in the vast depression valley bordered by mountains in its eastern and western margins. The 2018 earthquake source is the Palukoro Fault, which runs through the western margin of onshore Palu Valley then continued under the bay. Along the eastern margin of the valley, we also identified a wide zone of many potentially active faults strands orienting N-S and NW-SE, showing predominantly normal faulting. These faults are observed from their normal fault scarps as inspected from Light Detection and Ranging Digital Terrain Model (LiDAR DTM) data with 90-cm resolution and field ground checks. The faults deformed the old terrace sediments (Late Pleistocene, ~125 kya), but it is unclear whether they also cut the Holocene young alluvial like the ruptured fault of 2018 event. Further paleoseismology investigation is then necessary to obtain further information about these potentially-active normal faults, including their slip-rate and the past ruptures.


1988 ◽  
Vol 78 (4) ◽  
pp. 1463-1474
Author(s):  
Donald A. Stevenson ◽  
James D. Agnew

Abstract On 16 October 1983, at 19:40 (UTC), a magnitude 3.8 earthquake occurred near Lake Charles in southwestern Louisiana. The earthquake was felt over an area of 2600 km2 and had a maximum Modified Mercalli intensity of V. This was the first significant Louisiana Gulf Coast earthquake to be recorded and located by nearby microseismic networks. One possible foreshock and three aftershocks also were recorded and located using a velocity model developed for this study. The focal mechanism of the earthquake was determined based on P-wave first motions from 22 local and regional stations. The solution indicates a predominantly east-west trending, southeast-dipping normal fault with a small strike-slip component. The depth of this event (14+ km) provides the first significant evidence that normal faulting within the crystalline basement may control shallower growth faults along the Gulf Coast.


2021 ◽  
Vol 29 (2) ◽  
pp. 255-269
Author(s):  
Jozef Vlasáč ◽  
Martin Chovan ◽  
Rastislav Vojtko ◽  
Peter Žitňan ◽  
Tomáš Mikuš

The Finsterort and Anton vein system is located in the central zone of the Middle Miocene Štiavnica Stratovolcano between Vyhne and Hodruša-Hámre villages. The vein system contains several partial veins and veinlets and has generally NNE - SSW strike with moderate to steep eastward dip. Kinematics of the veins is characterised by older dextral strike-slip movement replaced by younger normal faulting. The mineralization is associated with the normal faults and the veins contain interesting paragenesis of Au-Ag bearing minerals. Minerals of precious metals are represented by argentotetrahedrite-(Zn) and rozhdestvenskayaite-(Zn), Au-Ag alloys, members of polybasite-pearceite and pyrargyrite-proustite solid solutions, acanthite and uytenbogaardtite. Au-Ag mineralization is accompanied by older paragenesis comprising mainly pyrite, galena, sphalerite and chalcopyrite. Besides quartz, carbonates (calcite, siderite and dolomite) are the main gangue minerals.


2016 ◽  
Vol 153 (5-6) ◽  
pp. 1166-1191 ◽  
Author(s):  
KENN-MING YANG ◽  
RUEY-JUIN RAU ◽  
HAO-YUN CHANG ◽  
CHING-YUN HSIEH ◽  
HSIN-HSIU TING ◽  
...  

AbstractIn the foreland area of western Taiwan, some of the pre-orogenic basement-involved normal faults were reactivated during the subsequent compressional tectonics. The main purpose of this paper is to investigate the role played by the pre-existing normal faults in the recent tectonics of western Taiwan. In NW Taiwan, reactivated normal faults with a strike-slip component have developed by linkage of reactivated single pre-existing normal faults in the foreland basin and acted as transverse structures for low-angle thrusts in the outer fold-and-thrust belt. In the later stage of their development, the transverse structures were thrusted and appear underneath the low-angle thrusts or became tear faults in the inner fold-and-thrust belt. In SW Taiwan, where the foreland basin is lacking normal fault reactivation, the pre-existing normal faults passively acted as ramp for the low-angle thrusts in the inner fold-and-thrust belt. Some of the active faults in western Taiwan may also be related to reactivated normal faults with right-lateral slip component. Some main earthquake shocks related to either strike-slip or thrust fault plane solution occurred on reactivated normal faults, implying a relationship between the pre-existing normal fault and the triggering of the recent major earthquakes. Along-strike contrast in structural style of normal fault reactivation gives rise to different characteristics of the deformation front for different parts of the foreland area in western Taiwan. Variations in the degree of normal fault reactivation also provide some insights into the way the crust embedding the pre-existing normal faults deformed in response to orogenic contraction.


Clay Minerals ◽  
2001 ◽  
Vol 36 (2) ◽  
pp. 237-247 ◽  
Author(s):  
M. Girard ◽  
P. Thélin ◽  
A. Steck

AbstractTectonic observations in the Tethyan Himalaya reveal an important extensional event that succeeds the emplacement of SW-verging nappes. A major thrust, called the Kum Tso Thrust, has been backfolded and reactivated by normal faulting associated with this event.Measurements of the Kübler index, coupled with characterization of clay-size paragenesis show the effect of normal faulting on the regional metamorphic zonation and indicate that important extension zones, like the Sarchu-Lachung La Normal Fault Zone (SLFZ), exist within the Tethyan Himalaya. Diagenetic limestones from within the SLFZ are characterized by the occurrence of mixed-layered clay phases, kaolinite and an illite with a 001 peak >0.4 Δ°2θ. This zone is bordered by two anchizonal-to-epizonal zones, where illite peaks become narrower. Further to the NE the successive appearance of biotite, chloritoid, garnet and garnet-staurolite-kyanite assemblages testifies to an increase in metamorphic grade. The cataclastic samples from the normal faults contain kaolinite, smectite and a ‘broad’ illite, indicating that extension occurs under diagenetic conditions.


2012 ◽  
Vol 52 (1) ◽  
pp. 415 ◽  
Author(s):  
Rosalind King ◽  
Simon Holford ◽  
Richard Hillis ◽  
Adrian Tuitt ◽  
Ernest Swierczek ◽  
...  

Previous in-situ stress studies across many of Australia’s petroleum basins demonstrate normal fault and strike-slip fault stress regimes, despite the sedimentary successions demonstrating evidence for widespread Miocene-to-Recent reverse faulting. Seismic and outcrop data demonstrate late Miocene-to-Recent reverse or reverse-oblique faulting in the Otway and Gippsland basins. In the Otway Basin, a series of approximately northeast to southwest trending anticlines related to reverse-reactivation of deep syn-rift normal faults, resulting in the deformation of Cenozoic post-rift sediments are observed. Numerous examples of late Miocene-to-Recent reverse faulting in the offshore Gippsland Basin have also been observed, with contractional reactivation of previously normal faults during these times partially responsible for the formation of anticlinal hydrocarbon traps that host the Barracouta, Seahorse and Flying Fish hydrocarbon fields, adjacent to the Rosedale Fault System. A new method for interpreting leak-off test data demonstrates that the in-situ stress data from parts of the Otway and Gippsland basins can be reinterpreted to yield reverse fault stress regimes, consistent with the present-day tectonic setting of the basins. This reinterpretation has significant implications for petroleum exploration and development in the basins. In the Otway and Gippsland basins, wells drilled parallel to the orientation of the maximum horizontal stress (σH) represent the safest drilling directions for both borehole stability and fluid losses. Faults and fractures, striking northeast to southwest, previously believed to be at low risk of reactivation in a normal fault or strike-slip fault stress regime are now considered to be at high risk in the reinterpreted reverse fault stress regime.


2012 ◽  
Vol 150 (2) ◽  
pp. 193-224 ◽  
Author(s):  
S. KOKKALAS ◽  
A. AYDIN

AbstractA distinct spatial relationship between surface faulting, magmatic intrusions and volcanic activity exists in the Aegean continental crust. In this paper, we provide detailed structural observations from key onshore areas, as well as compilations of lineament maps and earthquake locations with focal plane solutions from offshore areas to support such a relationship. Although pluton emplacement was associated with low-angle extensional detachments, the NNE- to NE-trending strike-slip faults also played an important role in localizing the Middle Miocene plutonism, providing ready pathways to deeper magma batches, and controlling the late-stage emplacement and deformation of granites in the upper crust. Additionally, the linear arrangements of volcanic centres, from the Quaternary volcanoes along the active South Aegean Volcanic Arc, are controlled primarily by NE-trending faults and secondarily by NW-trending faults. These volcanic features are located at several extensional settings, which are associated with the main NE-trending faults, such as (i) in the extensional steps or relay zones between strike-slip and oblique-normal fault segments, (ii) at the overlap zones between oblique-normal faults associated with an extensional strike-slip duplex and (iii) at the tip zone of a NE-trending divergent dextral strike-slip zone. The NE trend of volcano-tectonic features, such as volcanic cone alignments, concentration of eruptive centres, hydrothermal activity and fractures, indicates the significant role of tectonics in controlling fluid and magma pathways in the Aegean upper crust. Furthermore, microseismicity and focal mechanisms of earthquakes in the area confirm the activity and present kinematics of these NE- trending faults.


Sign in / Sign up

Export Citation Format

Share Document