Ireland’s heavy reliance on road transport has led to growing GHG emissions

Keyword(s):  
2018 ◽  
Vol 121 ◽  
pp. 329-340
Author(s):  
Ewelina Sendek-Matysiak ◽  
Emilia Szumska

It is expected that until 2025 there will be million electric cars (PEV) running on Polish roads [20]. These vehicles are undisputedly an important part of actions being undertaken in order to reach low-emission mobility in the area of road transport, responsible for 70% of GHG emissions from the whole transport sector. Although PEV cars have a number of advantages, they still have minor share in the automotive market, not only in Poland, but all over the world. Limited availability of public charging points still remain one of the key barriers for further progress of electromobility. In this study the authors will present current condition of charging infrastructure in Poland compared to other countries. They will also try to answer the question whether introduction of a number of incentives leads to faster electromobility progress.


2015 ◽  
Vol 9 (4) ◽  
pp. 45-52
Author(s):  
Csaba Fogarassy ◽  
Bálint Horváth ◽  
Linda Szőke ◽  
Attila Kovács

The topic of the present study deals with the changes and future trends of the European Union’s climate policy. In addition, it studies the manner in which Hungary’s transport sector contributes to the success of the above. The general opinion of Hungarian climate policy is that the country has no need of any substantial climate policy measures, since it will be able to reach its emission reduction targets anyway. This is mostly true, because the basis year for the long term goals is around the middle/end of the 1980’s, when Hungary’s pollution indices were entirely different than today due to former large-scale industrial production. With the termination of these inefficient energy systems, Hungary has basically been “performing well” since the change in political system without taking any specific steps in the interest of doing so. The analysis of the commitments for the 2020-2030 climate policy planning period, which defined emissions commitments compared to 2005 GHG emissions levels, has also garnered similar political reactions in recent years. Thus, it is not the issue of decreasing GHG emissions but the degree to which possible emissions can be increased stemming from the conditions and characteristics of economic growth that is important from the aspect of economic policy. In 2005, the Hungarian transport sector’s emissions amounted to 11 million tons, which is equal to 1.2% of total EU emissions, meaning it does not significantly influence total transport emissions. However, the stakes are still high for developing a low GHG emission transport system, since that will decide whether Hungary can avoid those negative development tendencies that have plagued the majority of Western European transport systems. Can Budapest avoid the scourge of perpetual smog and traffic jams? Can it avert the immeasurable accumulation of externalities on the capital city’s public bypass roads caused by having road transport conduct goods shipping? JEL classification: Q58


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7764
Author(s):  
Alejandro Ortega ◽  
Konstantinos Gkoumas ◽  
Anastasios Tsakalidis ◽  
Ferenc Pekár

The 2030 Climate target plan of the European Commission (EC) establishes a greenhouse gases (GHG) emissions reduction target of at least 55% by 2030, compared to 1990. It highlights that all transport modes—road, rail, aviation and waterborne—will have to contribute to this aim. A smart combination of vehicle/vessel/aircraft efficiency improvements, as well as fuel mix changes, are among the measures that can reduce GHG emissions, reducing at the same time noise pollution and improving air quality. This research provides a comprehensive analysis of recent research and innovation in low-emission alternative energy for transport (excluding hydrogen) in selected European Union (EU)-funded projects. It considers the latest developments in the field, identifying relevant researched technologies by fuel type and their development phase. The results show that liquefied natural gas (LNG) refueling stations, followed by biofuels for road transport and alternative aviation fuels, are among the researched technologies with the highest investments. Methane-based fuels (e.g., compressed natural gas (CNG), LNG) have received the greatest attention concerning the number of projects and the level of funding. By contrast, liquefied petroleum gas (LPG) only has four ongoing projects. Alcohols, esters and ethers, and synthetic paraffinic and aromatic fuels (SPF) are in between. So far, road transport has the highest use of alternative fuels in the transport sector. Despite the financial support from the EU, advances have yet to materialize, suggesting that EU transport decarbonization policies should not consider a radical or sudden change, and therefore, transition periods are critical. It is also noteworthy that there is no silver bullet solution to decarbonization and thus the right use of the various alternative fuels available will be key.


2021 ◽  
Vol 258 ◽  
pp. 01008
Author(s):  
Alexey Mikheev ◽  
Kanwar Muhammad Javed Iqbal ◽  
Irina Kapustina ◽  
Fida Hussain

There are growing climatic concerns of global warming due to increase of GHG emissions in the Earth’s atmosphere. There is a dire need of energy conservation and GHG emissions reduction by minimizing energy losses and bringing efficiencies in all processes including the transportation sector which has a major share. The business as usual case of energy losses and emissions from road transport with manual toll system has significant impacts not only on the atmosphere but also on non-renewables’ reserves and balance of payments of a country. It is a major challenge for energy sector governance and climate mitigation strategies worldwide. Thus, this paper aimed at developing econometric modeling for the assessment of various aspects and different scenarios of energy losses, emissions, BOPs and economic growth. The proposed modeling is based on multivariate Seemingly Unrelated Regression (SUR) model and can be used for informed decision-making process effectively. It will help in rationalizing the case for toll digitalization in order to accrue multiple benefits in terms of maintaining BOPs and environmental security with reduced emissions and energy losses.


2021 ◽  
Vol 13 (21) ◽  
pp. 12177
Author(s):  
Haider Ali Abbasi ◽  
Satirenjit Kaur Johl ◽  
Zullina Bt Hussain Shaari ◽  
Wajiha Moughal ◽  
Muhammad Mazhar ◽  
...  

The transport sector is the leading source of growing greenhouse gas (GHG) emissions globally. To consider environmental degradation aspects due to transport, electric vehicles (EVs) have the prospect to lead road transport to electric mobility from conventional petroleum vehicles. Despite various eco-friendly benefits, the EV market penetration ratio is very low, especially in developing countries. The primary reason for low penetration is consumer limited motivation and knowledge about the EVs features. This paper uses a unified theory of acceptance and technology (UTAUT) model to assess consumer motivation and environmental knowledge towards EVs. This research used convenience random sampling to collect data and analyzed the results using the Partial Least Squares (PLS) method on the example of 199 respondents from Malaysia. The study results revealed that factors identified in the motivational context significantly influence consumer intentions to purchase EVs. Perceived environmental knowledge and technophilia have been included in UTAUT from a motivational perspective. Furthermore, a significant relationship between effort expectancy, social influence, technophilia, perceived environmental knowledge, and purchase intention towards electric vehicles has been observed, without performance expectancy. The study findings serve to inform policymakers and automakers to formulate effective marketing strategies to enhance consumer motivation, knowledge, and value creation for EVs in a sustainable era. Ultimately, the policies will help to encourage consumers to buy eco-friendly vehicles that will help reduce transport carbon emissions and attain sustainable development goals (SDGs).


2015 ◽  
Vol 101 ◽  
pp. 303-311 ◽  
Author(s):  
Salvador Enrique Puliafito ◽  
David Allende ◽  
Sebastián Pinto ◽  
Paula Castesana

2021 ◽  
Author(s):  
Gareth Innes ◽  
Steinar Nesse ◽  
Jan Thore Eia

Abstract The offshore industry has for many years been cognisant of its impact on the marine environment. Since 1991, strict regulations relating to oil-based drill cuttings discharge have been in force in the signature countries to the OSPAR (Oslo/Paris) Convention. As the impact of greenhouse gas (GHG) emissions on climate change has become better understood, global carbon dioxide (CO2) emission reduction targets and how to meet them have risen up operators’ agendas. Offshore operations, which involve marine logistics, are also subject to limits on nitrogen dioxide (NOx) emissions, an indirect GHG that's toxic to humans and contributes to soil and water acidification. The choices that operators make today in how they operate, including the disposal of drill cuttings, must therefore address an increasing number of environmental and climate targets, in addition to health, safety and cost. This paper will outline the results of a comparative study between the offshore processing of drill cuttings and relevant conventional alternatives, including skip and ship, bulk transfer and cuttings reinjection (CRI). It is the first paper to show a direct emissions comparison between offshore processing and all other alternative methods for drill cuttings processing. The study assessed the carbon footprint and NOx emissions for each of the different alternatives for the treatment of drill cuttings. The values were then used to create an interactive emissions calculator that can be easily applied to specific projects to clarify the actual potential for emissions reduction within the drilling waste management process. A number of case studies were then run, comparing the different alternatives. For the examples run, the comparative assessment showed that wellsite thermal processing technology was the favourable alternative in terms of emissions, with an emission reduction in the order of 14 - 48%, compared with the onshore alternatives. Emissions of the alternatives, skip and ship and bulk transfer, were highly dependent on sailing and road transport distances, as well as power source for the onshore treatment facility. The assessment showed that CRI has the highest emissions of CO2 per tonne of cuttings. Alternatives involving onshore treatment had the highest NOx emissions when sailing distance was high, however this was highly dependent on the machinery and fuel source of the transport vessel - and for the offshore alternatives, the on-site energy production solution.


2020 ◽  
Vol 12 (6) ◽  
pp. 2334
Author(s):  
Izaskun Alvarez-Meaza ◽  
Enara Zarrabeitia-Bilbao ◽  
Rosa Maria Rio-Belver ◽  
Gaizka Garechana-Anacabe

The fuel-cell electric vehicle (FCEV) has been defined as a promising way to avoid road transport greenhouse emissions, but nowadays, they are not commercially available. However, few studies have attempted to monitor the global scientific research and technological profile of FCEVs. For this reason, scientific research and technological development in the field of FCEV from 1999 to 2019 have been researched using bibliometric and patent data analysis, including network analysis. Based on reports, the current status indicates that FCEV research topics have reached maturity. In addition, the analysis reveals other important findings: (1) The USA is the most productive in science and patent jurisdiction; (2) both Chinese universities and their authors are the most productive in science; however, technological development is led by Japanese car manufacturers; (3) in scientific research, collaboration is located within the tri-polar world (North America–Europe–Asia-Pacific); nonetheless, technological development is isolated to collaborations between companies of the same automotive group; (4) science is currently directing its efforts towards hydrogen production and storage, energy management systems related to battery and hydrogen energy, Life Cycle Assessment, and greenhouse gas (GHG) emissions. The technological development focuses on technologies related to electrically propelled vehicles; (5) the International Journal of Hydrogen Energy and SAE Technical Papers are the two most important sources of knowledge diffusion. This study concludes by outlining the knowledge map and directions for further research.


Sign in / Sign up

Export Citation Format

Share Document