scholarly journals Targeting Cancer Stem Cells—A Renewed Therapeutic Paradigm

2017 ◽  
Vol 13 (01) ◽  
pp. 45
Author(s):  
Catherine L Amey ◽  
Antoine E Karnoub ◽  
◽  

Metastasis is often accompanied by radio- and chemotherapeutic resistance to anticancer treatments and is the major cause of death in cancer patients. Better understanding of how cancer cells circumvent therapeutic insults and how disseminated cancer clones generate life-threatening metastases would therefore be paramount to the development of effective therapeutic approaches for clinical management of malignant disease. Mounting reports over the past two decades have provided evidence for the existence of a minor population of highly malignant cells within liquid and solid tumors, which are capable of self-renewing and of regenerating secondary growths with the heterogeneity of the primary tumors from which they derive. These cells, called tumor-initiating cells or cancer stem cells (CSCs) exhibit increased resistance to standard radio- and chemotherapies and appear to have mechanisms that enable them to evade immune surveillance. CSCs are therefore considered to be responsible for systemic residual disease after cancer therapy, as well as for disease relapse. How CSCs develop, the nature of the interactions they establish with their microenvironment, their phenotypic and functional characteristics, as well as their molecular dependencies have all taken center stage in cancer therapy. Indeed, improved understanding of CSC biology is critical to the development of important CSC-based anti-neoplastic approaches that have the potential to radically improve cancer management. Here, we summarize some of the most pertinent elements regarding CSC development and properties, and highlight some of the clinical modalities in current development as anti-CSC therapeutics.

2013 ◽  
Vol 137 (8) ◽  
pp. 1111-1116 ◽  
Author(s):  
Mark Podberezin ◽  
Jianguo Wen ◽  
Chung-Che (Jeff Chang

Context.—Cancer stem cells (CSCs) comprise a minor cell population in a tumor; however, they possess self-renewal capacity and are responsible for tumor recurrence and the emerging issue of tumor resistance. Despite recent advances in the study of pathogenesis and mechanisms of CSC-mediated disease recurrence and multidrug resistance, many questions remain unanswered. Objectives.—To provide an overview of CSC theory and to describe major methods of CSC detection and isolation, with the emphasis on those techniques that are potentially relevant in clinical laboratory practice. Particular attention is given to CSC markers, such as cancer testis antigens, which could become promising targets in the development of immunotherapy in settings of minimal residual disease. Data Sources.—The review is based on analysis of peer-reviewed literature cited in PubMed, as well as preliminary results of studies conducted in our laboratory. Conclusions.—Despite a lack of consensus in the scientific community on research methodology, CSCs have demonstrated significant potential as therapeutic targets in the treatment of cancer. Further research of CSC biology and markers will eventually lead to the development of novel therapeutic approaches for targeting these cells to treat resistant and recurrent tumors and minimal residual disease.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Emanuela Paldino ◽  
Valentina Tesori ◽  
Patrizia Casalbore ◽  
Antonio Gasbarrini ◽  
Maria Ausiliatrice Puglisi

There is an emerging body of evidence that chemoresistance and minimal residual disease result from selective resistance of a cell subpopulation from the original tumor that is molecularly and phenotypically distinct. These cells are called “cancer stem cells” (CSCs). In this review, we analyze the potential targeting strategies for eradicating CSCs specifically in order to develop more effective therapeutic strategies for metastatic colon cancer. These include induction of terminal epithelial differentiation of CSCs or targeting some genes expressed only in CSCs and involved in self-renewal and chemoresistance. Ideal targets could be cell regulators that simultaneously control the stemness and the resistance of CSCs. Another important aspect of cancer biology, which can also be harnessed to create novel broad-spectrum anticancer agents, is the Warburg effect, also known as aerobic glycolysis. Actually, little is yet known with regard to the metabolism of CSCs population, leaving an exciting unstudied avenue in the dawn of the emerging field of metabolomics.


2019 ◽  
Vol 14 (5) ◽  
pp. 405-420 ◽  
Author(s):  
Eduardo Alvarado-Ortiz ◽  
Miguel Á. Sarabia-Sánchez ◽  
Alejandro García-Carrancá

Cancer Stem Cells (CSC) generally constitute a minor cellular population within tumors that exhibits some capacities of normal Stem Cells (SC). The existence of CSC, able to self-renew and differentiate, influences central aspects of tumor biology, in part because they can continue tumor growth, give rise to metastasis, and acquire drug and radioresistance, which open new avenues for therapeutics. It is well known that SC constantly interacts with their niche, which includes mesenchymal cells, extracellular ligands, and the Extra Cellular Matrix (ECM). These interactions regularly lead to homeostasis and maintenance of SC characteristics. However, the exact participation of each of these components for CSC maintenance is not clear, as they appear to be context- or cell-specific. In the recent past, surface cellular markers have been fundamental molecular tools for identifying CSC and distinguishing them from other tumor cells. Importantly, some of these cellular markers have been shown to possess functional roles that affect central aspects of CSC. Likewise, some of these markers can participate in regulating the interaction of CSC with their niche, particularly the ECM. We focused this review on the molecular mechanisms of surface cellular markers commonly employed to identify CSC, highlighting the signaling pathways and mechanisms involved in CSC-ECM interactions, through each of the cellular markers commonly used in the study of CSC, such as CD44, CD133, CD49f, CD24, CXCR4, and LGR5. Their presence does not necessarily implicate them in CSC biology.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2168
Author(s):  
Balawant Kumar ◽  
Rizwan Ahmad ◽  
Swagat Sharma ◽  
Saiprasad Gowrikumar ◽  
Mark Primeaux ◽  
...  

Background: Despite recent advances in therapies, resistance to chemotherapy remains a critical problem in the clinical management of colorectal cancer (CRC). Cancer stem cells (CSCs) play a central role in therapy resistance. Thus, elimination of CSCs is crucial for effective CRC therapy; however, such strategies are limited. Autophagy promotes resistance to cancer therapy; however, whether autophagy protects CSCs to promote resistance to CRC-therapy is not well understood. Moreover, specific and potent autophagy inhibitors are warranted as clinical trials with hydroxychloroquine have not been successful. Methods: Colon cancer cells and tumoroids were used. Fluorescent reporter-based analysis of autophagy flux, spheroid and side population (SP) culture, and qPCR were done. We synthesized 36-077, a potent inhibitor of PIK3C3/VPS34 kinase, to inhibit autophagy. Combination treatments were done using 5-fluorouracil (5-FU) and 36-077. Results: The 5-FU treatment induced autophagy only in a subset of the treated colon cancer. These autophagy-enriched cells also showed increased expression of CSC markers. Co-treatment with 36-077 significantly improved efficacy of the 5-FU treatment. Mechanistic studies revealed that combination therapy inhibited GSK-3β/Wnt/β-catenin signaling to inhibit CSC population. Conclusion: Autophagy promotes resistance to CRC-therapy by specifically promoting GSK-3β/Wnt/β-catenin signaling to promote CSC survival, and 36-077, a PIK3C3/VPS34 inhibitor, helps promote efficacy of CRC therapy.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Kristen Abernathy ◽  
Jeremy Burke

Despite improvements in cancer therapy and treatments, tumor recurrence is a common event in cancer patients. One explanation of recurrence is that cancer therapy focuses on treatment of tumor cells and does not eradicate cancer stem cells (CSCs). CSCs are postulated to behave similar to normal stem cells in that their role is to maintain homeostasis. That is, when the population of tumor cells is reduced or depleted by treatment, CSCs will repopulate the tumor, causing recurrence. In this paper, we study the application of the CSC Hypothesis to the treatment of glioblastoma multiforme by immunotherapy. We extend the work of Kogan et al. (2008) to incorporate the dynamics of CSCs, prove the existence of a recurrence state, and provide an analysis of possible cancerous states and their dependence on treatment levels.


2015 ◽  
Vol 22 (6) ◽  
pp. T177-T186 ◽  
Author(s):  
Bruno M Simões ◽  
Denis G Alferez ◽  
Sacha J Howell ◽  
Robert B Clarke

Breast cancer stem cells (BCSCs) are potent tumor-initiating cells in breast cancer, the most common cancer among women. BCSCs have been suggested to play a key role in tumor initiation which can lead to disease progression and formation of metastases. Moreover, BCSCs are thought to be the unit of selection for therapy-resistant clones since they survive conventional treatments, such as chemotherapy, irradiation, and hormonal therapy. The importance of the role of hormones for both normal mammary gland and breast cancer development is well established, but it was not until recently that the effects of hormones on BCSCs have been investigated. This review will discuss recent studies highlighting how ovarian steroid hormones estrogen and progesterone, as well as therapies against them, can regulate BCSC activity.


2012 ◽  
Vol 1826 (2) ◽  
pp. 385-399 ◽  
Author(s):  
Jun Xia ◽  
Changjie Chen ◽  
Zhiwen Chen ◽  
Lucio Miele ◽  
Fazlul H. Sarkar ◽  
...  

Oncogenesis ◽  
2015 ◽  
Vol 4 (11) ◽  
pp. e177-e177 ◽  
Author(s):  
A Borah ◽  
S Raveendran ◽  
A Rochani ◽  
T Maekawa ◽  
D S Kumar

Author(s):  
Camila Juliano Salvador Rodrigues ◽  
Elita Ferreira da Silveira ◽  
Rafael da Silveira Vargas ◽  
Giordano Gatti de Giacomo ◽  
Marino Muxfeldt Bianchin

Background: Cancer stem cells, also known as tumor-initiating cells, are suggested to be responsible for drug resistance and cancer development due in part to their ability to self-renew themselves and differentiate into heterogeneous lineages of cancer cells. Objective: This study was designed to investigate the role of cancer stem cells in pancreatic cancer. Methods: A retrospective clinicopathological analysis was undertaken in 112 patients diagnosed with pancreatic ductal adenocarcinoma between 2005 and 2010, and immunohistochemistry was performed with antibodies against CD133, CD24, and OCT4. Positive nuclear, cytoplasmic or membrane staining for each antibody was rated on staining intensity, being classified into low/moderate or strong staining groups. Results were analyzed relative to each patient’s clinicopathological parameters. Results: There was an established relationship between the staining of the markers with some variables associated with worse prognosis, being the three markers present in most tumor cells and associated with tumor progression. We suppose that cancer stem cells are present from the beginning of tumor initiation and are intrinsically related to tumor development. Although the presence of stem cells has been associated with molecular biology of various tumors, their expression in pancreatic cancer has not yet been clinically reported. Conclusion: The presence of stem cells and their role in pancreatic cancer tumorigenesis may be considered as valuable prognostic factors, although the mechanism involved needs further investigation. Increasing insights into role of cancer stem cells and carcinogenesis can ultimately generate new ideas for molecularly based diagnostic and therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document