scholarly journals OPTIMIZATION OF THE UNIVERSAL ROTARY MODULE URM THROUGH ADDITIVE MANUFACTURING OF COMPOSITE MATERIALS

2021 ◽  
Vol 2021 (4) ◽  
pp. 4901-4905
Author(s):  
LUKAS HRIVNIAK ◽  
◽  
JOZEF SVETLIK ◽  
MICHAL SASALA ◽  
STEFAN ONDOCKO ◽  
...  

The article deals with the ongoing development of the universal rotary module URM 02. The high weight of the components from which the modules are assembled proved to be a significant problem. As well as the weight of the connecting parts that are needed to assemble the manipulator or robotic arm. Design changes have resulted in a reduction in weight compared to older generations of modules, but in order for the manipulator to function properly, further weight reduction is required. The article describes the procedure for lightening components by changing the material and the design changes that result from it. The original aluminium alloy was replaced by a continuous carbon fibres composite produced using CFR (Continuous Fiber Reinforcement) additive technology. Here you should describe the paper idea in short.

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 298
Author(s):  
Sander Rijckaert ◽  
Lode Daelemans ◽  
Ludwig Cardon ◽  
Matthieu Boone ◽  
Wim Van Paepegem ◽  
...  

Recent development in the field of additive manufacturing, also known as three-dimensional (3D) printing, has allowed for the incorporation of continuous fiber reinforcement into 3D-printed polymer parts. These fiber reinforcements allow for the improvement of the mechanical properties, but compared to traditionally produced composite materials, the fiber volume fraction often remains low. This study aims to evaluate the in-nozzle impregnation of continuous aramid fiber reinforcement with glycol-modified polyethylene terephthalate (PETG) using a modified, low-cost, tabletop 3D printer. We analyze how dimensional printing parameters such as layer height and line width affect the fiber volume fraction and fiber dispersion in printed composites. By varying these parameters, unidirectional specimens are printed that have an inner structure going from an array-like to a continuous layered-like structure with fiber loading between 20 and 45 vol%. The inner structure was analyzed by optical microscopy and Computed Tomography (µCT), achieving new insights into the structural composition of printed composites. The printed composites show good fiber alignment and the tensile modulus in the fiber direction increased from 2.2 GPa (non-reinforced) to 33 GPa (45 vol%), while the flexural modulus in the fiber direction increased from 1.6 GPa (non-reinforced) to 27 GPa (45 vol%). The continuous 3D reinforced specimens have quality and properties in the range of traditional composite materials produced by hand lay-up techniques, far exceeding the performance of typical bulk 3D-printed polymers. Hence, this technique has potential for the low-cost additive manufacturing of small, intricate parts with substantial mechanical performance, or parts of which only a small number is needed.


2019 ◽  
Vol 822 ◽  
pp. 534-541
Author(s):  
Dmitriy V. Masaylo ◽  
Alexey Orlov ◽  
Sergei Igoshin

The relevance of the work is due to the need in the modern world to obtain products with gradient properties for aerospace and medical applications. The method of laser-assisted cold spraying allows obtaining composite materials by additive technology. As a result of this work, a layer of material was constructed from a mechanical mixture of aluminum Al powder with corundum powder Al2O3, then the structure and properties of the material obtained were studied, and zones of gradient transition were identified.


2019 ◽  
Vol 1386 ◽  
pp. 012008
Author(s):  
I Sierra Nossa ◽  
O Bohórquez ◽  
A Pertuz ◽  
H G Sánchez Acevedo ◽  
O A González-Estrada

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2047
Author(s):  
Ji-Heon Kang ◽  
Jae-Wook Lee ◽  
Jae-Hong Kim ◽  
Tae-Min Ahn ◽  
Dae-Cheol Ko

Recently, with the increase in awareness about a clean environment worldwide, fuel efficiency standards are being strengthened in accordance with exhaust gas regulations. In the automotive industry, various studies are ongoing on vehicle body weight reduction to improve fuel efficiency. This study aims to reduce vehicle weight by replacing the existing steel reinforcements in an automobile center pillar with a composite reinforcement. Composite materials are suitable for weight reduction because of their higher specific strength and stiffness compared to existing steel materials; however, one of the disadvantages is their high material cost. Therefore, a hybrid molding method that simultaneously performs compression and injection was proposed to reduce both process time and production cost. To replace existing steel reinforcements with composite materials, various reinforcement shapes were designed using a carbon fiber-reinforced plastic patch and glass fiber-reinforced plastic ribs. Structural analyses confirmed that, using these composite reinforcements, the same or a higher specific stiffness was achieved compared to the that of an existing center pillar using steel reinforcements. The composite reinforcements resulted in a 67.37% weight reduction compared to the steel reinforcements. In addition, a hybrid mold was designed and manufactured to implement the hybrid process.


2021 ◽  
Vol 14 ◽  
Author(s):  
Aniket Yadav ◽  
Piyush Chohan ◽  
Ranvijay Kumar ◽  
Jasgurpreet Singh Chohan ◽  
Raman Kumar

Background: Additive manufacturing is the most famous technology which requires materials or composites to be fabricated with layer by layer deposition strategy. Due to its lower cost, higher accuracy and less material wastage; this technology is used in almost every sector. But in many applications there is a need to alter the properties of a product in a certain direction with the help of some reinforcements. With the use of reinforcements, composite layers can be fabricated using additive manufacturing technique which will enhance the directional properties. A novel apparatus is designed to spray the reinforcement material into the printed structures in a very neat and precise manner. This spray nozzle is fully automated, which works according to tool-paths generated by slicing software. The alternate deposition of layers of reinforcement and build materials helped to fabricate customized composite products. Objective: The objective of present study is to design and analyze the working principle of novel technique which has been developed to fabricate composite materials using additive manufacturing. The apparatus is numerically controlled by computer according to CAD data which facilitates the deposition of alternate layers of reinforcement and matrix material. The major challenges during the design process and function of each component has been explored. Methods: The design process is initiated after comprehensive literature review performed to study previous composite manufacturing processes. The recent patents published by different patent offices of the world are studied in detail and analysis has been used to design a low cost composite fabrication apparatus. A liquid dispensing device comprises a storage tank attached with a pump and microprocessor. The microprocessor receives the signal from the computer as per tool paths generated by slicing software which decides the spray of reinforcements on polymer layers. The spraying apparatus moves in coordination with the primary nozzle of the Fused Filament Fabrication process. Results: The hybridization of Fused Filament Fabrication [process with metal spray process has been successfully performed. The apparatus facilitates the fabrication of low cost composite materials along with flexibility of complete customization of composite manufacturing process. The anisotropic behaviour of products can be easily controlled and managed during fabrication which can be used for different applications.


2021 ◽  
pp. 87-93
Author(s):  
Abhijith Ram C ◽  
D Ajith

Space travel has always been a crucial task. Exploration and experimenting on Planets in our solar system will help us understand the universe better and also, we could find the origin of life. Rovers play an important role in finding these answers. The problem we have at present is not only with technology to explore the universe but also the ability of our rockets to carry rovers to other rocks. Since a large amount of fuel is required for Space travel, we end with very little cargo that can be sent to explore. As additive manufacturing started to play a vital part in Mechanical Science, we are going to try to use that tool to build a Generative design that helps in parts consolidation, weight reduction, increase flexibility, design optimisation and cost consolidation. Since weight is an important aspect, we could reduce the present rover weight and add additional scientific tools to the rover to increase its scope of search and applications. This project focuses on features enrichment in Rovers by optimizing rover weight and design using Design for Additive Manufacturing concept.


2016 ◽  
Vol 5 (3) ◽  
pp. 73 ◽  
Author(s):  
Haidar F. AL-Qrimli ◽  
Karam S. Khalid ◽  
Ahmed M. Abdelrhman ◽  
Roaad K. Mohammed A ◽  
Husam M. Hadi

The purpose of this work is to present a clear fundamental thought for designing and investigating straight bevel gear made of composite material. Composite materials have the advantage of being light, producing low noises, and extra loading capacities. Due to these properties, it is highly preferable over conventional materials. A comparison between different types of material used in a gear structure will be shown. The outcome shows that a new form of cheap material may be useful for designing a new type of lighter and stiffer gear, designed for robotic arm applications or any power transmission application.


Mechanik ◽  
2018 ◽  
Vol 91 (3) ◽  
pp. 244-248
Author(s):  
Andrzej Zakręcki ◽  
Bartłomiej Gaczorek ◽  
Adrianna Kania ◽  
Katarzyna Berent

Described is the process of designing and manufacturing tubeless wheels for the Mars rover with structural infill by the AGH Space Systems scientific club, who will take part in the University Rover Challenge competition. Some of Mars rover subsystems’ are so unique hence they should be manufactured from the beginning. The algorithm for generating the structural infill has been proposed. The strength tests were conducted for the preliminary identification of material parameters, and their results were used in FEM strength analysis. Wheels have been made of polymers with fused filament fabrication (FFF) additive technology, and then applied in the KALMAN rover.


Sign in / Sign up

Export Citation Format

Share Document