scholarly journals Comparing the Compressive Strengths of Concrete Made with River Sand and Quarry Dust as Fine Aggregates

2014 ◽  
Vol 20 ◽  
pp. 179-189 ◽  
Author(s):  
Chijioke Chiemela ◽  
Igwegbe Walter ◽  
Ibearugbulem Ogedi ◽  
Okoye Peter ◽  
Oke Mong

Nowadays development of infrastructures is becoming number one priority in the world, particularly in the developing countries. So there are great demands within the construction industries for river sand as fine aggregate used in the production of concrete. This has created a very difficult situation; the cost of river sand has increased and also there is great fear from environmentalist and ecologist that in the future there may be scarcity of river sand and the environment and the ecology will be distorted. Hence, the need to find materials which are affordable and available to partially or totally replaced river sand in the production of concrete. This work is focused on the use of quarry dust as a total replacement to river sand in the production of concrete, and comparing the results (compressive strength) to that obtained from conversional concrete made with river sand

Waterway sand and pit sand are the most normally utilized fine aggregates for concrete creation in many parts of the world. Huge scale extraction of these materials presents genuine ecological risk in numerous parts of the nation. Aside from the ecological danger, there still exists the issue of intense lack in many regions. In this way, substitute material in place of river sand for concrete production should be considered. The paper means to examine the compressive and split tensile qualities of concrete produced using quarry residue, sand, and a blend of sand and quarry dust. The experimentation is absolutely research facility based. A total of 60 concrete cubes of size 150 mm x 150 mm x 150 mm, and 60 cylinders 150 mm in diameter and 300 mm deep, conforming to M50 grade were casted. All the samples were cured and tested with a steady water/concrete proportion of 0.31. Out of the 60 blocks cast, 20 each were made out of natural river sand, quarry dust and an equivalent blend of sand and quarry dust. It was discovered that the compressive strength and split tensile strength of concrete produced using the blend of quarry residue and sand was higher than the compressive qualities of concrete produced using 100% sand and 100% quarry dust.


Author(s):  
S.O Ajamu ◽  
I.A Raheem ◽  
S.B Attah ◽  
J.O Onicha

Natural river sand is one of the important constituent materials in concrete production while stone dust is a material obtained from crusher plants which is also sometimes being used either partially or fully in replacement of natural river sand in concrete production. Use of stone dust in concrete not only improves the quality of concrete but also conserve the natural river sand. However, due its scarcity and environmental degradation caused resulting from excessive mining of Natural river sand, there is need to investigate an alternative material of the same quality which can replace river sand in concrete production. In the present study, experiments were carried out to study the gradation of aggregates, workability, compressive strength and split tensile strength of concrete made using quarry dust as replacement of fine aggregate at 0, 25, 50, 75, and 100%. Grade M15 of concrete was produced with ordinary Portland cement (OPC) for referral concrete while M25 of concrete was prepared for compressive strength and split tensile strength concrete. Workability and Compressive strength were determined at different replacement level of fine aggregate and optimum replacement level was determined based on compressive strength. Results showed that by replacing 50% of fine aggregate with quarry dust, concrete of maximum compressive strength can be produced as compared to all other replacement levels. The effect of quarry dust on compressive strength and split tensile strength was investigated and from the overall result obtained, it was observed that the compressive strength and split tensile strength increased significantly for all the curing ages from 0% to 50% replacement level of quarry dust. Maximum value obtained for 28day compressive and tensile strength were 25N/mm2 and 2.3N/mm2 respectively and this occurred at 50% replacement.


2021 ◽  
Vol 1041 ◽  
pp. 89-94
Author(s):  
Nurul Aini Salehuddin ◽  
Mohd Fadzil Arshad ◽  
Zakiah Ahmad ◽  
Mohd Zaim Mohd Nor ◽  
Abdul Hadi Hassan

In this study, the effect of replacing the river sand with industrial waste and cellulosic waste was investigated. The cellulosic waste use in this study only focuses on kenaf core, while the industrial waste use in this study is quarry dust. The fine aggregate formulation is adjusted with a different percentage of kenaf core. While the quarry dust is fixed at 50% replacement level. The water-cement ratio set for the formulation is 0.75, and the cement-sand ratio fixes at 1:8. The physical properties are measured through compressive strength and density at 28 days. The result shows that 10% is the maximum replacement of sand with kenaf core to produced brick that using 50% of quarry dust. The compressive strength value of the 10% of kenaf core at 28 days is 8.16 N/mm2 while for density is 1830 kg/m3 at 28 days. All the result shows that kenaf core has the potential to be used as a lightweight fine aggregate. But kenaf core needs to combine with other materials that contribute to the strength.


2014 ◽  
Vol 875-877 ◽  
pp. 619-623 ◽  
Author(s):  
Suppachai Sinthaworn ◽  
Wasan Teerajetgul ◽  
Attasit Sirivachiraporn

In this study, the workability, the compressive strength and the water penetration depth under pressure for concrete incorporate with quarry waste as fine aggregate were investigated. The mix proportions of concrete were set into two classes of water to cement ratio (w/c = 0.4, 0.6). The first class (C1), the mix proportion is 1.0:0.6:2.0:4.0 (Cement: Water: Fine: Coarse). And the second class (C2), the mix proportion is 1.0:0.4:1.5:3.0 and adding the superplasticizer 1% of cement weight. The natural river sand, which use in concrete, was partially replaced by quarry dust at the rates of 0% (no quarry dust), 50% and 100 % by weight of fine aggregate. The results show that concrete containing quarry wastes as fine aggregate decreased the workability and do not significantly affect the 28-day compressive strength whereas concrete incorporating with quarry dusts reduces the water penetration depth.


Concrete is the most widely used composite material today. The constituents of concrete are coarse aggregate, fine aggregate, binding material, and water. A rapid increase in construction activities leads to an acute shortage of conventional construction materials. Conventionally, sand is being used as fine aggregate in concrete. The function of the fine aggregate is to assist in producing workability ad uniformity in the mixture. The river deposits are the most common source of fine aggregate. So there are great demands within the construction industries for river sand as fine aggregate used in the production of concrete. This has created a very difficult situation, also there is great fear from environmentalist and the ecology will be distorted. Hence, the need to find the materials which are affordable and available partially or totally replaced river sand in the production of concrete. Hence we are forced to think the alternative materials. This report aims to present the study done to establish scientific data regarding the compressive strength, tensile strength and flexural strength of concrete on partial replacement of fine aggregate with laterite soil in concrete mix of M50 grade. The sand shall be replaced gradually in the mentioned grade of concrete by 0%, 10%, 20% and 30% with laterite soil and the specimen shall be tested at curing intervals of 3days, 7days, and 28days. For compressive strength and at curing interval of 3days, 7days, and 28days for tensile strength as well as for flexural strength


2014 ◽  
Vol 20 ◽  
pp. 115-128
Author(s):  
Chijioke Chiemela ◽  
Peter C. Okoye ◽  
Pius C. Nwosu ◽  
O. Mong Oke ◽  
Christian N. Ohakwe

In recent years, Nigeria has witness rapid development especially in the area of infrastructural development like roads, bridges, buildings etc. The conventional methods used in concrete mixing have its own peculiar problems, like time wasting, material wasting and errors. These problems have been the cause of structural failures which has given rise to loss of life and properties. Hence the need to development a method that will take care of all these anomalies witness in the conventional method. This work is aim at removing these anomalies by the use of Scheffes optimization method. This optimization method can predict the compressive strength of a concrete given the mix ratios and also predict the mix ratios required to give a compressive strength for a particular concrete made by completely replacing river sand with quarry dust. With this method it will be easy to predict the compressive strength of concrete based on the type of structure it is to be used for, there by eliminating the problems associated with structural collapse due to errors in concrete mixing by conventional method


2021 ◽  
Vol 1019 ◽  
pp. 82-91
Author(s):  
I. Rohini ◽  
R. Padmapriya

Copper slag can be considered as waste product which could have a favorable future in construction industry as a substitution to fine aggregates in concrete. Concrete is a very brittle material and in due course of time it tends to crack .These cracks, expands and corrodes the steel reinforcement which intensify the cost of maintenance and decreases the structural stability over periods of time. To avoid crack formation in concrete microorganism can be directly added to concrete during the mixing stage which is called as bacteria impregnated concrete. Bio concrete makes use of calcium carbonate precipitation in the presence of the suitable media results in microbial induced calcite crystals. This work reports an experimental procedure to investigate the effect of using copper slag in concrete when it is remedied by microorganism. Five series of concrete mixtures were prepared with different proportions of copper slag ranging from 0%, 25%, 50%, 75% and 100% to fine aggregate. Copper slag concrete mixtures were treated with 1% and 2% microorganisms by the weight of cement. All Specimens were cured for 7, 14 and 28 days before testing. Mechanical properties such as Compressive strength and Flexural Strength of Bacterial copper slag concrete were found and compared with the conventional concrete. The highest Compressive strength obtained was 45.6 Mpa at 75% substitution of copper slag with 2% microorganism and the corresponding strength for control mix was 26.8Mpa. The highest flexural strength obtained was 10.3Mpa and the corresponding strength for control mix was 4.5Mpa.It has been observed that 75% replacement of copper slag can be effectively used as a replacement for fine aggregate when it is treated by Microorganisms.


Author(s):  
Suraj V Borsare

The role of quarry dust in the construction of building and other structures to eliminate the demand of nature sand by using quarry waste to replace the use of natural sand. We are investigating the potential of using quarry waste and its effect on the strength and workability of concrete. Initially cement concrete cube was studied with various proportion of cement concrete +quarry dust (M20 & M25). The experimental result showed that the additional of quarry dust as fine aggregate ratio of 30%, 40% and 50% was found to enhance the compressive properties. The compressive strength of concrete cubes at the age of 7 and 28 days were obtained at room temperature. These raw materials of concrete, i.e., river sand and gravel, are also struggling to cope with the rapidly growing demand in many areas around the globe. The sources of good quality river sand and gravel are depleting very fast. According to United Nations Environment Program (UNEP) report, “Sand-rarer than one thinks”, published in March2014, sand and gravel has now become the most widely used natural resource on the planet after water. These are now being extracted at a rate far greater than their renewal. Crushed sands, fine aggregate produced from stone crushing, has become very popular in areas where natural sand is not abundantly available or where there is scarcity in the supply of natural sand. The Mumbai-Pune express highway was a project, where there is a difficulty in procurement of natural sand. This made the construction company to use crushed sand for making approximately 20 lakh cum of concrete necessary for the construction. However, such type of sands contains a large amount of micro-fines, i.e., particles finer than 75 microns, which can have an adverse effect on properties of concrete. So proportioning of different raw materials at the time of mix design is very important, when crushed sand is used in concrete The availability of sand at low cost as a fine aggregate in concrete is not suitable and that is the reason to search for an alternative material. Quarry dust satisfies the reason behind the alternative material as a substitute for sand at very low costIt is found that 40% replacement of fine aggregate by quarry dust gives maximum result in strength than normal concrete and then decreases from 50%. The compressive strength is quantified for varying percentage and grades of concrete by replacement of sand with quarry dust.


2021 ◽  
Vol 6 (2) ◽  
pp. 96-103
Author(s):  
Ranno Marlany Rachman ◽  
Try Sugiyarto Soeparyanto ◽  
Edward Ngii

This research aimed to utilize Anadara Granosa (Blood clam shell) clamshell waste as a new innovation in concrete technology and to investigate the effect of Anadara Granosa clamshell powder utilization as an aggregate substitution on the concrete compressive strength. The sample size was made of cylinders with a size of 10 cm x 20 cm with variations of clamshell powder 10%, 20% and 30% from the fine aggregate volume then soaked for 28 days as per the method of the Indonesian National Standard. The evaluation results exhibited that the slump value exceeded the slump value of normal concrete with a slump value of 0% = 160 mm, 10% = 165 mm, 20% = 180 mm and 30% = 180 mm. Additionally, it was found that the concrete compressive strength obtained post 28 days were 20.78 Mpa, 21.95 Mpa, 21.17 Mpa and 24.28 Mpa for normal concrete (0%), substitution concrete (10%), substitution concrete (20%) and substitution concrete (30%), respectively. Leading on from these results, it was concluded that the increment of Anadara Granosa clamshell powder substitution led to the increase of concrete compressive strength test.


Sign in / Sign up

Export Citation Format

Share Document