scholarly journals Improving Quality Attributes of Tomato during Cold Storage by Preharvest Foliar Application of Calcium Chloride and Potassium Thiosulfate

2019 ◽  
Vol 76 ◽  
pp. 98-110
Author(s):  
Wael M. Semida ◽  
Ahmed E. Emara ◽  
Mohammed A. Barakat

The aim of this trial was to investigate the pre-harvest foliar application of calcium chloride and potassium thiosulfate each at 0.0, 0.2 and 0.4 % on some quality of tomato fruit (hybrid 65010) during cold storage. The experimental layout of cold storage experiments was a split-split-plot based on Randomized Complete Blocks design with three replications. Time of cold storage, calcium chloride and potassium thiosulfate levels were randomly distributed in the main, sub-and sub-sub plots, orderly. At the termination of cold storage, effect on tomato fruit titratable acidity, vitamin C and lycopene contents while, negative impact on firmness and total soluble sugars contents was obtained. At termination of cold storage, pre-harvest foliar calcium chloride at 0.2 and/or 0.4 % caused increments in fruit titratable acidity, vitamin C, total soluble sugars, lycopene and firmness contents. In addition, pre-harvest foliar potassium thiosulfate at 0.4 % enhanced fruit vitamin C, total soluble sugars, lycopene and firmness contents and also increased titratable acidity content. Generally, the interaction between cold storage × pre-harvest foliar calcium chloride or potassium thiosulfate at 0.2 and/or 0.4% increased fruit total titratable acidity, vitamin C, total soluble sugars, lycopene and firmness contents. Also, the interaction between pre-harvest calcium chloride × potassium thiosulfate at 0.4 % was distinguished and increased all studied fruit quality at the end of cold storage. The interaction treatment of cold storage × calcium chloride at 0.4 % × potassium thiosulfate at 0.4 % was the best that improved fruit quality more than others.

2018 ◽  
Vol 30 (1) ◽  
pp. 67-78 ◽  
Author(s):  
Ramadan A. Hassanein ◽  
Ehab A. Salem ◽  
Ahmed A. Zahran

AbstractThis study was performed to explore the efficacy of combining more than one postharvest treatment in maintaining some quality attributes and reducing fungal pathogenicity in cold-stored guava fruits. The investigated postharvest treatments included the control, CaCl2(4%), lemongrass oil (2 dm3kg−1), gamma (γ) irradiation (0.2, 0.4 and 0.6 kGy), 0.4 kGy γ irradiation + CaCl2(4%), and 0.4 kGy γ irradiation + lemongrass oil (2 dm3kg−1). The studied physiochemical attributes included weight loss, decay percentage, fruit firmness, total soluble solids (TSS), titratable acidity (TA), and vitamin C content. Different fungal species were also isolated from decayed fruits and were identified asAlternaria alternata,Alternaria solani,Aspergillus niger,Botrytis cinerea,Fusarium solaniandRhizopus stolonifer. The severity of infection for the different fungi was determined, and anin vitroantifungal assay was conducted for lemongrass oil. All the investigated treatments generally reduced decay and water loss percentages, and controlled TSS, TA and vitamin C decrements that occurred during cold storage. On the other hand, higher irradiation doses generally increased fruit softness, and the 0.4 kGy γ dose did not contribute to the overall fruit quality when coupled with CaCl2and lemongrass oil, compared to CaCl2and lemongrass oil treatments alone.


2018 ◽  
Vol 12 (2) ◽  
pp. 416-424
Author(s):  
Marília Caixeta Sousa ◽  
Luan Fernando Ormond Sobreira Rodrigues ◽  
Mônica Bartira da Silva ◽  
Janaina Oliveira Cruz ◽  
Marla Silvia Diamante ◽  
...  

The tomato fruit is rich in antioxidant compounds and has great nutritional and economic importance, annually promoting research on the nutritional and productive characteristics. The present study aimed to evaluate whether foliar application of commercial products based on growth regulators [auxin, cytokinin and gibberellin (Ax+CK+GA)], micronutrients [cobalt and molybdenum (Mi)] and mixtures of macro and micronutrients [nitrogen, boron, copper, molybdenum and zinc (Ma+Mi)], isolated and in combination, increase productivity and improve the post-harvest quality of tomato fruits (Predador F1). The experiment design used randomized blocks, with seven treatments and four repetitions, which were (T1) control; (T2) Ax+CK+GA; (T3) Ma+Mi; (T4) Mi; (T5) Ax+CK+GA + (Ma+Mi); (T6) Ax+CK+GA + Mi; and (T7) Ax+CK+GA + Mi + (Ma+Mi). The variables production, precocity, soluble solids content (SS), titratable acidity (TA), ratio (SS/TA), pH, total soluble sugars, ascorbic acid and weight loss were evaluated. The Ax+CK+GA application, isolated or in combination with Ma+Mi, promoted the precocity, and the use of isolated Ax+CK+GA and Mi improved the tomato plant productivity. The growth regulators, macro and micronutrients, isolated or in combination, increased the ascorbic acid content in the fruits.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 522C-522 ◽  
Author(s):  
Celso L. Moretti ◽  
Steven A. Sargent ◽  
Donald J. Huber ◽  
Rolf Puschmann

Tomato (Lycopersicon esculentum L.) fruits, cv. Solarset, were harvested at the mature-green stage and treated with 50 μL/L ethylene at 20C. Breaker fruits (<10% red coloration) were dropped from 40 cm onto a smooth, solid surface and held along with undropped fruits at 20°C and 85% relative humidity. At table-ripe stage, pericarp, placental, and locular tissue were individually excised and analyzed for total carotenoids, total soluble sugars, soluble solids content, titratable acidity, density (locule tissue), polygalacturonase activity, and electrolyte efflux (pericarp tissue). Internal bruising caused by impact forces significantly affected pericarp and locule tissues, but not placental tissue. For bruised locule tissue, total carotenoids content decreased by 37.1%, vitamin C content by 15.6%, and titratable acidity by 15.3% as compared to control. However, density was increased by 3.0%. For bruised pericarp tissue, vitamin C content decreased by 16.5%, while polygalacturonase activity and electrolyte efflux increased by 33.3% and 24.8%, respectively. The development of abnormal ripening following an impact was confined to locule and pericarp tissues and appears to be related to the disruption of cellular structure and stimulation of enzymic activity.


2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Mohammad Kazem Souri ◽  
Sara Dehnavard

AbstractThis study was done to evaluate the effects of foliar application of ammonium sulfate on growth and fruit quality of tomato plants under hydroponic culture system. Over four months of tomato plant growth, plants were sprayed once per week with different concentrations of ammonium sulfate (0, 50, 100 and 200 mM), as well as with 50 mM every second day. Foliar application of ammonium sulfate led to reductions in many growth and quality parameters, and higher ammonium concentrations exerted greater reductions. Number of leaves, fresh weight of shoots, percentage of leaf dry weight and fruit yield were negatively associated with the treatment with ammonium sulfate. However, leaf nitrogen concentration, fruit diameter and fruit length increased significantly by the application of ammonium. Fruit quality factors were also affected by ammonium sulfate spray treatments. The maximum pH, titratable acidity and total soluble solids (TSS) were obtained from the lowest (50 mM) weekly application of ammonium sulfate. The results indicate that foliar application of ammonium in moderate concentrations could have beneficial effects on plant growth and quality of tomato fruit.


Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 355 ◽  
Author(s):  
Hernández-Hernández ◽  
Quiterio-Gutiérrez ◽  
Cadenas-Pliego ◽  
Ortega-Ortiz ◽  
Hernández-Fuentes ◽  
...  

The effects of nanoparticles (NPs) on plants are contrasting; these depend on the model plant, the synthesis of the nanoparticles (concentration, size, shape), and the forms of application (foliar, substrate, seeds). For this reason, the objective of this study was to report the impact of different concentrations of selenium (Se) and copper (Cu) NPs on yield, antioxidant capacity, and quality of tomato fruit. The different concentrations of Se and Cu NPs were applied to the substrate every 15 days (five applications). The yield was determined until day 102 after the transplant. Non-enzymatic and enzymatic antioxidant compounds were determined in the leaves and fruits as well as the fruit quality at harvest. The results indicate that tomato yield was increased by up to 21% with 10 mg L−1 of Se NPs. In leaves, Se and Cu NPs increased the content of chlorophyll, vitamin C, glutathione, 2,2′-azino-bis(3-ethylbenzthiazolin-6-sulfonic acid (ABTS), superoxide dismutase (SOD), glutathione peroxidase (GPX) and phenylalanine ammonia liasa (PAL). In fruits, they increased vitamin C, glutathione, flavonoids, firmness, total soluble solids, and titratable acidity. The combination of Se and Cu NPs at optimal concentrations could be a good alternative to improve tomato yield and quality, but more studies are needed to elucidate their effects more clearly.


2017 ◽  
Vol 52 (9) ◽  
pp. 734-742 ◽  
Author(s):  
Cassandro Vidal Talamini do Amarante ◽  
Alexandra Goede de Souza ◽  
Thalita Dal Toé Benincá ◽  
Cristiano André Steffens

Abstract: The objective of this work was to evaluate the physicochemical attributes and vitamin C contents of fruits of five Brazilian genotypes of feijoa (Acca sellowiana), at harvest and after cold storage. The Alcântara, Mattos, Helena, and Nonante cultivars, as well as accession 2316, were studied. The assessed attributes were: fresh mass loss, titratable acidity, soluble solids contents, soluble solids contents/titratable acidity ratio, pH, skin and flesh color, texture, and vitamin C contents (skin and flesh). After storage, there were reductions of 2.9% in soluble solids contents, of 32.2% in titratable acidity, and of approximately 85% in texture attributes, besides increases of 36.3% in the soluble solids contents/titratable acidity ratio and of 21.7% in the pH of fruits. The vitamin C content in the skin was higher than that in the flesh, and increased in both skin and flesh after storage. 'Alcântara' fruits have the highest contents of vitamin C in the skin and flesh. Fruits of 'Nonante' and 'Mattos' show better preservation of the texture attributes, and fruits of 'Nonante', the lowest levels of flesh browning during storage.


2020 ◽  
Vol 69 (2) ◽  
pp. 130-135
Author(s):  
Matias Siueia Júnior ◽  
Maria Ligia de Souza Silva ◽  
Anderson Ricardo Trevizam ◽  
Valdemar Faquin ◽  
Deivisson Ferreira da Silva

Nitrogen (N) and sulfur (S) are nutrients that, in addition to influencing plant growth and production, interfere with processes related to postharvest fruit quality. In the present study, N x S interaction was evaluated in the postharvest quality of tomato (Solanum lycopersicum L.). The experiment was conducted in a greenhouse using 5 dm3 capacity vessels containing a 0-20 cm layer of a dystropherric Red Latosol. A 5 x 3 factorial design was used, with combinations of five doses of N (0, 100, 200, 300 and 400 mg dm-3) and three doses of S (0, 60 and 120 mg dm-3) distributed in a completely randomized design, with four repetitions. After harvest, the attributes of fruit quality were evaluated: firmness, pH, soluble solids (SS), titratable acidity (AT), soluble solids ratio and titratable acidity (SS / AT), vitamin C, lycopene and beta-carotene. An increase in firmness was observed, as well as the content of soluble solids, titratable acidity and the SS / AT ratio of the fruits as a result of the interaction N x S. However, this interaction favoured the reduction of the contents of vitamin C, lycopene and beta-carotene, and the quality characteristics of tomato fruit in relation to the recommended values. Only the increasing doses of N favoured a higher pH in the tomato fruits.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1011D-1011
Author(s):  
Francesco Montesano ◽  
Cristina Ferulli ◽  
Angelo Parente ◽  
Francesco Serio ◽  
Pietro Santamaria

Nutrient solutions (NS) containing moderate to high concentrations of salts are frequently supplied to improve the taste of tomato fruits grown in soilless systems. The aim of this study was to determine whether salinity and water stress affect the tomato fruit quality similarly. The research was conducted in Mola di Bari, Italy, during Autumn 2004, and compared the nutrient film technique (NFT) with the trough-bench technique [Subirrigation (SUB)] in terms of tomato (Lycopersicon esculentum Mill. cv. Kabiria) fruit quality. In the NFT, the plants were grown with two electrical conductivity (EC) levels (2–4 and 6–8 dS·m-1) of NS. The highest EC was obtained by increasing all the ions in the NS. In the SUB system, two water tensions (-4 and -8 kPa) of substrate (perlite) were examinated. At harvest, in each cluster (six/plant), fruit dry matter (DM) and total soluble solids (TSS) were determinated. In the fourth and sixth cluster, vitamin C content and titratable acidity were determined. Total yield was not influenced by either soilless system, while the average weight of the fruit was lower in the SUB. The DM and TTS were influenced by soilless system (on average, 6.6 vs 7.3 g/100 g of fresh matter and 5.3 vs. 5.9 °Brix, with NFT and SUB, respectively). Both of the stresses resulted in the increase of DM and TSS, principally in SUB (water stress) in respect to NFT (salinity stress), while vitamin C and titratable acidity were not influenced by soilless system or water/salinity stress (25.2 mg/100 g fresh matter and 0.45 g/100 mL of citric acid juice, respectively). Results of NFT with the highest EC of NS exceeded 9 dS·m-1, without any stress symptoms in the plants, while EC in the SUB system remained unchanged (about 2.5 dS·m-1).


2018 ◽  
Vol 36 (No. 3) ◽  
pp. 227-232 ◽  
Author(s):  
Jiao Li ◽  
Liangang Mao ◽  
Yanning Zhang ◽  
Lan Zhang ◽  
Hongyun Jiang

Changes in mango fruit quality, malondialdehyde content, and enzymatic activities in response to pathogen Alternaria alternata infection were studied. A. alternata significantly affected the appearance of mango fruit at 5 and 7 days after treatment (DAT). The quality of pathogen-infected fruit first showed a significant decrease in titratable acidity and vitamin C content and a significant increase in pH since 3 DAT. The malondialdehyde content was higher than that in the untreated controls at 3 and 7 DAT. The enzyme activities of ascorbate peroxidase and polyphenol oxidase showed significant increases since 3 DAT. Significant increases in l-phenylalanine ammonia-lyase and superoxide dismutase activities were observed at 7 DAT. These results indicate that A. alternata infection first significantly affects some biochemical constituents and enzyme activities in mango fruit since 3 DAT and that there was no significant effect on appearance until 5 DAT.


2014 ◽  
Vol 86 (1) ◽  
pp. 485-494 ◽  
Author(s):  
CRISTIANO ANDRÉ STEFFENS ◽  
CASSANDRO V.T. DO AMARANTE ◽  
ERLANI O. ALVES ◽  
AURI BRACKMANN

The objective of this study was to evaluate the effect of controlled atmosphere (CA) on quality preservation of ‘Laetitia’ plums, mainly on internal breakdown, in order to determine the best CA storage conditions. Two experiments were carried out one in 2010, and another in 2011. In 2010, besides cold storage (CS; 21.0 kPa O2 + 0.03 kPa CO2), the fruits were stored under the following CA conditions (kPa O2+kPa CO2): 1+3, 1+5, 2+5, 2+10, and 11+10. In 2011, the fruits were stored under CS and CA of 1+0, 1+1, 2+1, and 2+2. The fruit stored under different CA conditions had lower respiration and ethylene production, better preservation of flesh firmness, texture and titratable acidity, lower skin red color, and lower incidence of skin cracking than the fruit in CS. In 2010, the fruit under CA with 2+5, 1+5, and 1+3 had a pronounced delay in ripening, although it exhibited a high incidence of internal breakdown. In 2011, the CA conditions with 2+1 and 2+2 provided the best delay in ripening and a reduced incidence of internal breakdown. The best CA condition for cold storage (at 0.5°C) of ‘Laetitia’ plums is 2 kPa O2 + 2 kPa CO2.


Sign in / Sign up

Export Citation Format

Share Document