scholarly journals Osteosarcoma growth on trabecular bone mimicking structures manufactured via laser direct write

Author(s):  
Atra Malayeri ◽  
Colin Sherborne ◽  
Thomas Paterson ◽  
Shweta Mittar ◽  
Ilida Ortega Asencio ◽  
...  

This paper describes the direct laser write of a photocurable acrylate-based PolyHIPE (High Internal Phase Emulsion) to produce scaffolds with both macro- and microporosity, and the use of these scaffolds in osteosarco-ma-based 3D cell culture. The macroporosity was introduced via the application of stereolithography to produce a clas-sical woodpile structure with struts having an approximate diameter of 200 ?m and pores were typically around 500 ?m in diameter. The PolyHIPE retained its microporosity after stereolithographic manufacture, with a range of pore sizes typically between 10 and 60 ?m (with most pores between 20 and 30 ?m). The resulting scaffolds were suitable substrates for further modification using acrylic acid plasma polymerisation. This scaffold was used as a structural mimic of the trabecular bone and in vitro determination of biocompatibility using cultured bone cells (MG63) demon-strated that cells were able to colonise all materials tested, with evidence that acrylic acid plasma polymerisation im-proved biocompatibility in the long term. The osteosarcoma cell culture on the 3D printed scaffold exhibits different growth behaviour than observed on tissue culture plastic or a flat disk of the porous material; tumour spheroids are ob-served on parts of the scaffolds. The growth of these spheroids indicates that the osteosarcoma behave more akin to in vivo in this 3D mimic of trabecular bone. It was concluded that PolyHIPEs represent versatile biomaterial systems with considerable potential for the manufacture of complex devices or scaffolds for regenerative medicine. In particular, the possibility to readily mimic the hierarchical structure of native tissue enables opportunities to build in vitro models closely resembling tumour tissue.

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Laurence Finot ◽  
Eric Chanat ◽  
Frederic Dessauge

AbstractIn vivo study of tissue or organ biology in mammals is very complex and progress is slowed by poor accessibility of samples and ethical concerns. Fortunately, however, advances in stem cell identification and culture have made it possible to derive in vitro 3D “tissues” called organoids, these three-dimensional structures partly or fully mimicking the in vivo functioning of organs. The mammary gland produces milk, the source of nutrition for newborn mammals. Milk is synthesized and secreted by the differentiated polarized mammary epithelial cells of the gland. Reconstructing in vitro a mammary-like structure mimicking the functional tissue represents a major challenge in mammary gland biology, especially for farm animals for which specific agronomic questions arise. This would greatly facilitate the study of mammary gland development, milk secretion processes and pathological effects of viral or bacterial infections at the cellular level, all with the objective of improving milk production at the animal level. With this aim, various 3D cell culture models have been developed such as mammospheres and, more recently, efforts to develop organoids in vitro have been considerable. Researchers are now starting to draw inspiration from other fields, such as bioengineering, to generate organoids that would be more physiologically relevant. In this chapter, we will discuss 3D cell culture systems as organoids and their relevance for agronomic research.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nathan Jeger-Madiot ◽  
Lousineh Arakelian ◽  
Niclas Setterblad ◽  
Patrick Bruneval ◽  
Mauricio Hoyos ◽  
...  

AbstractIn recent years, 3D cell culture models such as spheroid or organoid technologies have known important developments. Many studies have shown that 3D cultures exhibit better biomimetic properties compared to 2D cultures. These properties are important for in-vitro modeling systems, as well as for in-vivo cell therapies and tissue engineering approaches. A reliable use of 3D cellular models still requires standardized protocols with well-controlled and reproducible parameters. To address this challenge, a robust and scaffold-free approach is proposed, which relies on multi-trap acoustic levitation. This technology is successfully applied to Mesenchymal Stem Cells (MSCs) maintained in acoustic levitation over a 24-h period. During the culture, MSCs spontaneously self-organized from cell sheets to cell spheroids with a characteristic time of about 10 h. Each acoustofluidic chip could contain up to 30 spheroids in acoustic levitation and four chips could be ran in parallel, leading to the production of 120 spheroids per experiment. Various biological characterizations showed that the cells inside the spheroids were viable, maintained the expression of their cell surface markers and had a higher differentiation capacity compared to standard 2D culture conditions. These results open the path to long-time cell culture in acoustic levitation of cell sheets or spheroids for any type of cells.


2020 ◽  
Vol 25 (3) ◽  
pp. 234-246
Author(s):  
Charles McRae White ◽  
Mark A. Haidekker ◽  
William S. Kisaalita

New insights into the biomechanical properties of cells are revealing the importance of these properties and how they relate to underlying molecular, architectural, and behavioral changes associated with cell state and disease processes. However, the current understanding of how these in vitro biomechanical properties are associated with in vivo processes has been developed based on the traditional monolayer (two-dimensional [2D]) cell culture, which traditionally has not translated well to the three-dimensional (3D) cell culture and in vivo function. Many gold standard methods and tools used to observe the biomechanical properties of 2D cell cultures cannot be used with 3D cell cultures. Fluorescent molecules can respond to external factors almost instantaneously and require relatively low-cost instrumentation. In this review, we provide the background on fluorescent molecular rotors, which are attractive tools due to the relationship of their emission quantum yield with environmental microviscosity. We make the case for their use in both 2D and 3D cell cultures and speculate on their fundamental and practical applications in cell biology.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Imran Tariq ◽  
Muhammad Yasir Ali ◽  
Muhammad Farhan Sohail ◽  
Muhammad Umair Amin ◽  
Sajid Ali ◽  
...  

AbstractClinical success of effective gene therapy is mainly hampered by the insufficiency of safe and efficient internalization of a transgene to the targeted cellular site. Therefore, the development of a safe and efficient nanocarrier system is one of the fundamental challenges to transfer the therapeutic genes to the diseased cells. Polyamidoamine (PAMAM) dendrimer has been used as an efficient non-viral gene vector (dendriplexes) but the toxicity and unusual biodistribution induced by the terminal amino groups (–NH2) limit its in vivo applications. Hence, a state of the art lipid modification with PAMAM based gene carrier (lipodendriplexes) was planned to investigate theirs in vitro (2D and 3D cell culture) and in vivo behaviour. In vitro pDNA transfection, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) generation, cellular protein contents, live/dead staining and apoptosis were studied in 2D cell culture of HEK-293 cells while GFP transfection, 3D cell viability and live/dead staining of spheroids were performed in its 3D cell culture. Acute toxicity studies including organ to body index ratio, hematological parameters, serum biochemistry, histopathological profiles and in vivo transgene expression were assessed in female BALB/c mice. The results suggested that, in comparison to dendriplexes the lipodendriplexes exhibited significant improvement of pDNA transfection (p < 0.001) with lower LDH release (p < 0.01) and ROS generation (p < 0.05). A substantially higher cellular protein content (p < 0.01) and cell viability were also observed in 2D culture. A strong GFP expression with an improved cell viability profile (p < 0.05) was indicated in lipodendriplexes treated 3D spheroids. In vivo archives showed the superiority of lipid-modified nanocarrier system, depicted a significant increase in green fluorescent protein (GFP) expression in the lungs (p < 0.01), heart (p < 0.001), liver (p < 0.001) and kidneys (p < 0.001) with improved serum biochemistry and hematological profile as compared to unmodified dendriplexes. No tissue necrosis was evident in the animal groups treated with lipid-shielded molecules. Therefore, a non-covalent conjugation of lipids with PAMAM based carrier system could be considered as a promising approach for an efficient and biocompatible gene delivery system.


2018 ◽  
Author(s):  
Aurélien Pasturel ◽  
Pierre-Olivier Strale ◽  
Vincent Studer

3D cell culture aims at reconciliating the simplicity of in vitro models with the human like properties encountered in vivo. Soft permeable hydrogels have emerged as user-friendly materials to grow cells in more physiological conditions. With the intent on turning these homogeneous substrates into biomimetic templates, we introduce a generic solution compatible with the most biologically relevant and often frail materials. Here we take control of the chemical environment driving generic radical reactions to craft common gels with patterned light. In a simple microreactor, we harness the well-known inhibition of radicals by oxygen to enable topographical photopolymerization. Strikingly, by sustaining an oxygen rich environment, we can also induce hydrogel photo-scission which turns out to be a powerful and generic subtractive manufacturing method. We finally introduce a flexible patterned functionalization protocol based on available photo-linkers. Using these common tools on the most popular hydrogels, we tailored soft templates where cells grow or self-organize into standardized structures. The platform we describe has the potential to set a standard in future 3D cell culture experiments.


Author(s):  
Loh Teng Hern Tan ◽  
Liang Ee Low ◽  
Siah Ying Tang ◽  
Wei Hsum Yap ◽  
Lay Hong Chuah ◽  
...  

Three-dimensional cell culture methods revolutionize the field of anticancer drug discovery, forming an important link-bridge between conventional in vitro and in vivo models and conferring significant clinical and biological relevant data. The current work presents an affordable yet reproducible method of generating homogenous 3D tumor spheroids. Also, a new open source software is adapted to perform an automated image analysis of 3D tumor spheroids and subsequently generate a list of morphological parameters of which could be utilized to determine the response of these spheroids toward treatments. Our data showed that this work could serve as a reliable 3D cell culture platform for preclinical cytotoxicity testing of natural products prior to the expensive and time-consuming animal models


2019 ◽  
Vol 25 (34) ◽  
pp. 3599-3607 ◽  
Author(s):  
Adeeb Shehzad ◽  
Vijaya Ravinayagam ◽  
Hamad AlRumaih ◽  
Meneerah Aljafary ◽  
Dana Almohazey ◽  
...  

: The in-vitro experimental model for the development of cancer therapeutics has always been challenging. Recently, the scientific revolution has improved cell culturing techniques by applying three dimensional (3D) culture system, which provides a similar physiologically relevant in-vivo model for studying various diseases including cancer. In particular, cancer cells exhibiting in-vivo behavior in a model of 3D cell culture is a more accurate cell culture model to test the effectiveness of anticancer drugs or characterization of cancer cells in comparison with two dimensional (2D) monolayer. This study underpins various factors that cause resistance to anticancer drugs in forms of spheroids in 3D in-vitro cell culture and also outlines key challenges and possible solutions for the future development of these systems.


2021 ◽  
Author(s):  
Jae Won Choi ◽  
Song-Hwa Bae ◽  
In Young Kim ◽  
Minjeong Kwak ◽  
Tae Geol Lee ◽  
...  

Nanomaterials are used in a variety of fields and toxicity assessment is paramount for their development and application. Although most toxicity assessments have been performed in 2D (2-Dimensional) cell culture, the inability to adequately replicate the in vivo environment and toxicity is a limitation. To overcome the limitation, a 3D (3-Dimensional) cell culture method has been developed to make an environment closer to an in vivo system. In this study, 20 nm SiO2 nanoparticles were dispersed in serum-containing (SC) and serum-free (SF) media to compare 2D cell culture and 3D cell culture toxicity. The cells were subjected to a 3D cell culture method in which HepG2, a human-derived liver cancer cell line, was mixed on a scaffold. We found that nanoparticles induced toxicity in 2D cell culture, but toxicity was not observed in 3D cell culture similar to in vivo environment. However, differences in toxicity were observed between the three types of scaffolds in the absence of serum as the number of cells decreased.


Author(s):  
Yong X. Chen ◽  
Shihao Yang ◽  
Jiahan Yan ◽  
Ming-Han Hsieh ◽  
Lingyan Weng ◽  
...  

Current cell-culture is largely performed on synthetic two-dimensional (2D) petri dishes or permeable supports such as Boyden chambers, mostly because of their ease of use and established protocols. It is generally accepted that modern cell biology research requires new physiologically relevant three-dimensional (3D) cell culture platform to mimic in vivo cell responses. To that end, we report the design and development of a suspended hydrogel membrane (ShyM) platform using gelatin methacrylate (GelMA) hydrogel. ShyM thickness (0.25–1 mm) and mechanical properties (10–70 kPa) can be varied by controlling the size of the supporting grid and concentration of GelMA prepolymer, respectively. GelMA ShyMs, with dual media exposure, were found to be compatible with both the cell-seeding and the cell-encapsulation approach as tested using murine 10T1/2 cells and demonstrated higher cellular spreading and proliferation as compared to flat GelMA unsuspended control. The utility of ShyM was also demonstrated using a case-study of invasion of cancer cells. ShyMs, similar to Boyden chambers, are compatible with standard well-plates designs and can be printed using commonly available 3D printers. In the future, ShyM can be potentially extended to variety of photosensitive hydrogels and cell types, to develop new in vitro assays to investigate complex cell–cell and cell–extracellular matrix (ECM) interactions.


Sign in / Sign up

Export Citation Format

Share Document