scholarly journals Effect of repair methods on mechanical behaviors of repair area in composite laminate fuselage skin with different damage size

2018 ◽  
Vol 2 (3) ◽  
Author(s):  
Liping Liu 1 ◽  
Yucan Wang 1 ◽  
Jing Tian 1 ◽  
Ruifeng Wang 1 ◽  
Jianxin Xu 1

Composite laminates are widely used in the large civil aircrafts because of their excellent mechanical properties. The maintenance and repair of composite laminates become essential. In this paper, a new adhesive-rivet hybrid repair of composite laminate fuselage skin is presented. For the circular hole damage with the diameter of 90mm and 50mm, the finite element simulation models of adhesive repair and adhesive-rivet hybrid repair were built respectively. Uniform pressure load was applied on these finite element models. The mechanical properties of laminate motherboard, patch and adhesive film for these four models were analyzed. The effects of adhesive repair, adhesive-rivet hybrid repair on mechanical behaviors of repair areas of composite laminate fuselage skins with different damage size were studied. By analyzing the mechanical behaviors of these two repair methods, a suitable repair method can be obtained.

2014 ◽  
Vol 606 ◽  
pp. 159-163 ◽  
Author(s):  
K.J. Wong ◽  
Xiao Jing Gong ◽  
Shahram Aivazzadeh ◽  
Mohd Nasir Tamin

In the present work, the mode I delamination behaviour of a quasi-isotropic quasi-homogeneous carbon/epoxy composite laminate with adjacent plies of 0o//45o is studied numerically. To describe the R-curve behaviour observed during crack propagation, a linear-exponential traction-separation law is proposed, where the fracture toughness and the increment in the fracture energy could be considered separately in the model. This model is then implemented in the finite element simulation of the delamination process in the composite laminate. Numerical results indicate that with the incorporation of the fibre bridging effect leads to a well-predicted force-displacement response of the composite laminates.


2017 ◽  
Vol 753 ◽  
pp. 305-309 ◽  
Author(s):  
Xu Lu

The welding H-section beam has good mechanical properties with its superior structure. So they become the main components of steel structure and have been widely used. In this paper, the welded H-section beam is used as the research object. The finite element simulation model is established. The heat source parameters are determined. The deformation of the steel due to the welding process is studied. The results show that the bottom plate and the bottom plate inward bending is about 2.32mm cause by welding process. The residual stress can reach 400MPa.


Author(s):  
W. M. Parks ◽  
Y. B. Guo ◽  
K. A. Woodbury

Mechanical properties of scaffolds are important for fabricating engineered tissues. However, localized mechanical properties of scaffold cannot be directly obtained from experiments. This study provides a solid modeling approach to simulate mechanical behaviors of alginate scaffolds with different porosity. A scaffold micro-domain has been modeled as made of sub-units, arranged in a sphere-based pore architecture. An expression to calculate porosity was also derived for the scaffold architecture. Finite element simulations of compressing alginate scaffolds were performed to evaluate the effect of porosity on quasi-static mechanical behavior. The developed FEA model is capable of computing scaffold strength and predicting localized mechanical behavior without destructive materials testing.


2007 ◽  
Vol 353-358 ◽  
pp. 1033-1036
Author(s):  
Shu Lin Li ◽  
Man Yi Hou

The finite-element simulation models of the projectile and the discrete rod impacting to the aircraft panel structure in high velocity are established according to some experiment projects. Based on dynamic finite-element Program, the forming of impact damage in the panel structure is simulated. Through comparing the simulation results of damage pattern and size in the panel to the experiment results, the reliability of the material models and equations of state and contact algorithm used in the simulations is testified. Take the simulation of projectile vertically impacting to the panel as example, the aircraft panel structure response characteristics are analyzed briefly based on the results including the displacement of typical node in the panel, the stress course of one element and the energy change of the panel.


Author(s):  
Zhaohui Shan ◽  
Suresh K. Sitaraman

Titanium thin films have been widely used in microelectronics due to their good adhesion to substrates, such as Silicon wafer and Quartz. However, mechanical behavior of Titanium thin films has not been well characterized. This paper presents a methodology that combines the nanoindentation technique and finite element modeling to characterize the mechanical (elastic and plastic) properties of thin film with its application on Titanium thin film deposited on silicon substrate. The results show that the elastic properties (Young’s modulus) of the Titanium thin film does not change much from the bulk Titanium, and the plastic properties (yield stress and strain hardening exponent) of the Titanium thin film are higher than those of bulk Titanium. This method is also applicable for the study of mechanical properties of other thin films and small volume materials.


Author(s):  
R. Manivel ◽  
R. Shanmuga Prakash

Railways provide a long and continuous journey for passengers and goods at an affordable cost. The rails and rail joints should be of high quality to ensure a safer transportation of people and goods. The tracks (rail) are made of alloys of iron and are fastened to other rails using fasteners. Nowadays, these fasteners are replaced with welded joints because of rising maintenance issues. Thermite welding is a globally adopted process for welding the rails. This article aims to best utilise the Aluminium composites for the welding of rails. The composites were prepared using stir casting route and a wear test was done on the casted samples to test their durability. Also, some of the mechanical properties of the composite material were found. The rail and track models were made and imported into ANSYS Finite Element Analysis software. The predicted results show that aluminium composites have considerable strength when compared to any other composite material.


Sign in / Sign up

Export Citation Format

Share Document